
r.

r

■ "

P r i m e . E M A C S R e f e r e n c e G u i d e

^ k D O C 5 0 2 6 - 2 L A

r

EMACS Reference Guide

Second Edition

Marion Shepp

This guide documents the software operation of the
Prime Computer and its supporting systems and utilities as
implemented at Master Disk Revision Level 21.0 (Rev. 21.0).

Prime Computer, Inc., Prime Park, Natick, MA 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice and should not be construed as
a commitment by Prime Computer, Inc. Prime Computer, Inc. assumes no responsibility for any
errors that may appear in this document
The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.
Copyright © 1987 by Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760
PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of Prime Computer, Inc.
DISCOVER, EDMS, FM+, INFO/BASIC, INFORM, Prime INFORMATION, Prime
INFORMATION CONNECTION, MDL, MIDAS, MIDASPLUS, PRIME MEDUSA, PERFORM,
PERFORMER, PRIME/SNA, PRIME TIMER, PRIMECALC, PRIMELINK, PRIMENET,
PRIMEWAY, PRIMEWORD, PRIMIX, PRISAM, PRODUCER, Prime INFORMATION/pc,
PST 100, PT25, PT45, PT65, PT200, PW153, PW200, PW250, RINGNET, SIMPLE, 50 Series,
400, 750, 850, 2250, 2350,2450, 2550, 2650, 2655,2755, 6350, 6550, 9650, 9655, 9750, 9755,
9950, 9955, and 9955II are trademarks of Prime Computer, Inc.
Ann Arbor is a trademark of Ann Arbor Terminals, Inc.
Concept is a trademark of Human Designed Systems, Inc.

PRINTING HISTORY

First Edition (IDR5026) April 1982 for Release 18.3
Update 1 (PTU2600-105) May 1983 for Release 19.2
Update 2 (PTU2600-107) May 1984 for Release 19.3
Update 3 (UPD5026-13A) January 1986 for Release 20.0
Second Edition (DOC5026-2LA) January 1988 for Release 21.0

CREDITS

Design: Leo Maldonado
Editorial: Margaret Hill
Document Preparation: Anne Marie Fantasia, Celeste Henry, and Kathy Normington
Production: Judy Gordon
Composition: Julie Cyphers, Anne Marie Fantasia

HOW TO ORDER TECHNICAL DOCUMENTS

Follow the instructions below to obtain a catalog, a price list, and information on placing orders.
United States Only: Call Prime Telemarketing, toll free, at 800-343-2533, Monday through Friday,
8:30 a.m. to 5:00 p.m. (EST).
International: Contact your local Prime subsidiary or distributor.

CUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for customers in the United States needing service:

1-800-322-2838 (within Massachusetts)
1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)
1-800-343-2320 (within other states)

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided in the back of this book.
Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

Contents

r
r

A b o u t T h i s B o o k i x

1 G e t t i n g S t a r t e d W i t h E M A C S 1 - 1
I n t r o d u c t i o n 1 - 1
C o m m o n E M A C S T e r m s 1 - 1
E M A C S C o m m a n d C o n v e n t i o n s 1 - 3

O r g a n i z a t i o n o f t h e E M A C S S c r e e n 1 - 6
E n t e r i n g t h e E M A C S E n v i r o n m e n t 1 - 9
S a v i n g Y o u r W o r k 1 - 1 2
E x i t i n g F r o m E M A C S 1 - 1 3
B a s i c E M A C S C o m m a n d s 1 - 1 4

2 Summary of EMACS Commands by Function 21
I n t r o d u c t i o n 2 - 1

H e l p C o m m a n d s 2 - 2
C u r s o r M o v e m e n t C o m m a n d s 2 - 3
S c r e e n D i s p l a y C o m m a n d s 2 - 4

E d i t i n g C o m m a n d s 2 - 5
F i l e M a n a g e m e n t C o m m a n d s 2 - 1 5
B u f f e r a n d W i n d o w C o m m a n d s 2 - 1 6
M a c r o s 2 - 1 7
P R I M O S C o m m a n d E x e c u t i o n 2 - 1 9
G e n e r a l M o d e s 2 - 1 9
E n v i r o n m e n t C o m m a n d s 2 - 2 3
I n f o r m a t i o n C o m m a n d s 2 - 2 4
C o m m a n d s f o r S l o w T e r m i n a l s 2 - 2 5

L i b r a r y C o m m a n d s 2 - 2 5
S p e e d - t y p e C o m m a n d s 2 - 2 5
M i s c e l l a n e o u s C o m m a n d s 2 - 2 6

3 D i c t i o n a r y o f E M A C S C o m m a n d s 3 - 1
I n t r o d u c t i o n 3 - 1

D i c t i o n a r y o f C o m m a n d s 3 - 1

4 O n l i n e H e l p F a c i l i t y 4 - 1
I n t r o d u c t i o n 4 - 1
E M A C S H e l p C o m m a n d 4 - 1

A p r o p o s 4 - 2
E x p l a i n _ K e y 4 - 2
D e s c r i b e 4 - 3
L O p t i o n 4 4
? O p t i o n 4 - 5

5 S p e e d - t y p e 5 - 1
I n t r o d u c t i o n 5 - 1
H o w S p e e d - t y p e W o r k s 5 - 1

Speed-type Commands Reference Section 5-13

6 C u s t o m i z e d L i b r a r y F i l e s 6 l
I n t r o d u c t i o n 6 - 1
U s e r L i b r a r y F i l e s 6 - 1
F i l e H o o k s 6 - 3

C r e a t i n g Y o u r O w n I n t e r f a c e 6 - 6
S i m p l i fi c a t i o n s Y o u C a n M a k e 6 - 7

7 T h e T E R M C A P F a c i l i t y 7 - 1
I n t r o d u c t i o n 7 - 1

U s i n g T E R M C A P W i t h E M A C S 7 - 2
T E R M C A P C a p a b i l i t i e s 7 - 4

Adding an Entry to the TERMCAP Database 7-11

8 L a n g u a g e M o d e s 8 - 1
I n t r o d u c t i o n 8 - 1
C O B O L M o d e 8 - 1
C M o d e 8 - 7
F O R T R A N M o d e 8 - 1 3
R P G M o d e 8 - 1 6
L I S P M o d e 8 - 2 4
C o m m o n L I S P M o d e 8 - 2 6
L i s t e n e r M o d e 8 - 2 8
Additional Information About Compiling
a n d D e b u g g i n g P r o g r a m s 8 - 2 9

vi

A Alphabetical Summary of Commands ai

B P r i m e E x t e n d e d C h a r a c t e r S e t b - i
S p e c i f y i n g P r i m e E C S C h a r a c t e r s B - l

I n d e x I n d e x - l

VII

About This Book

Purpose
The EMACS Reference Guide is a reference source for the EMACS editor. It is intended to
provide the user with detailed information about any specific EMACS command. The central
focus of this new edition is the listing and description of all current EMACS commands in
Chapters 2 and 3.

Chapter 1 provides instructions for new users about starting and running EMACS. In addition, the
book contains information about how to use EMACS' online help facility, the speed-type
abbreviation facility, TERMCAP, and EMACS' high-level language modes.

Organization
The EMACS Reference Guide contains eight chapters and two appendices, which are summarized
below.

Chapter 1 — Getting Started With EMACS
This chapter introduces procedures for starting up and ninning EMACS. The chapter includes a
list of ten basic EMACS commands.

Chapter 2 — Summary of EMACS Commands by Function
This chapter lists all of the current EMACS commands, by function. It contains a discussion of
each functional category and lists associated command names with keybindings (if any) and short
definitions.

Chapter 3 — Dictionary of EMACS Commands
This chapter contains a description of every standard EMACS command. The commands are
listed alphabetically, by command name.

Chapter 4 — Online Help Facility
This chapter describes the EMACS online help commands. The purpose of the chapter is to
encourage you to use this useful, but little-known online help facility of EMACS.
Chapter 5 — Speed-type
This chapter provides instructions for using the EMACS abbreviation facility. The speed-type
environment enables you to define an abbreviation for a single word or a large amount of text.
When you type the abbreviation, EMACS expands it automatically, thus saving you time and
keystrokes.

IX

EMACS Reference Guide

Chapter 6 — Customized Library Files
This chapter explains how to construct a startup library file so that you can set up customized
parameters when you invoke EMACS.

Chapter 7 — The TERMCAP Facility
This chapter is for experienced users who want to set up their own terminal configurations or use
EMACS on a non-Prime terminal. It contains instructions for using the TERMCAP descriptions
of terminal capabilities, and writing a TERMCAP entry.

Chapter 8 — Language Modes
This chapter explains how to use EMACS programming language modes to enter, edit, compile,
and debug programs in the high-level languages that Prime EMACS supports.

Appendix A — Alphabetical Summary of Commands
This appendix lists all current EMACS commands by keybinding with a short description of what
each command does. Extended commands are listed by command name.

Appendix B — Prime Extended Character Set
This appendix discusses the expanded ASCII character set that becomes effective at Rev. 21.0.

Related Documentation
These documents provide related information:

• EMACS Extension Writing Guide (DOC5025-2LA)
• EMACS Primer (IDR6107-183P)
• EMACS Standard User Interface Guide (DOC7446-2LA)
• EMACS Reference Card (IDR5026-1RA)
• Prime User's Guide (DOC4130-4LA, UPD4130-41A, UPD4130-42A)

Online tutorials for fundamental mode are located in EMACS*. The tutorials are:

• TEACH-EMACS-FUND-INSTRUCTIONS
• TEACH-EMACS-FTJND-1
• TEACH-EMACS-FUND-2
• TEACH-EMACS-FUND-3
• TEACH-EMACS-FUND-4

About This Book

Acknowledgments
The author wishes to thank Mary Hadcock, Tom Bugos, Peter Neilson, John Seybold, Jerry
Ornstein, Matt Carr, George Gove, and all others who contributed to and reviewed this document.

Prime Documentation Conventions
The following conventions are used in command formats, statement formats, and in examples
throughout this document Examples illustrate the uses of these commands and statements in
typical applications.

Convention Explanation Example
lowercase In text, words in lowercase bold next_buf
boldface face indicate the names of com

mands, functions, and variables.
italic In command formats, words in -SPDT pathname

Boldface
i t a l i c

Brackets
[]

Braces
{ }

Vertical bars

Ellipsis

Parentheses
()

italic indicate variables for which
you must substitute a suitable
value.
In examples, user input is bold
face italic but system prompts
and output are not.
Brackets enclose a list of one or
more optional items. Choose
none, one, or more of these
items.
Braces enclose a list of items.
Choose one and only one of
these items.
Vertical bars enclose a list of two
or more options. Choose one or
more of these items.
An ellipsis indicates that the pre
ceding item may be entered more
than once on the command line.
In command or statement for
mats, you must enter parentheses
exactly as shown.

Command: save all files

LD - b r i e f "]-SIZE J

CLOSE
{f ilenamelA L L J

OUTPUT
If ilenamelTTY I

SHUTDN pdev-1
[. . . p d e v - n]

DIM array (row, col)

XI

EMACS Reference Guide

Convention

Hyphen

Key symbol

Angle brackets
in messages

< >

Explanation
Wherever a hyphen appears as
the first character of an option, it
is a required part of that option.
In examples, the name of a key
enclosed within a rectangle indi
cates that you press that key.
In messages, a word or words en
closed within angle brackets
indicates a variable for which the
program substitutes the appropri
ate value.

Example
SPOOL -LIST

Press Return

Disk <diskname>

XII

Getting Started With EMACS

•

•

•

•

Introduction
This chapter contains essential information for using the EMACS full-screen editor. It discusses
the following topics:

• Common EMACS terms

• EMACS command conventions

Organization of the EMACS screen
Entering the EMACS environment
Saving your work
Exiting from EMACS

• Basic EMACS commands

Common EMACS Terms
buffer

A work space in which EMACS contains the text that you create or edit.

command
A directive that specifies the operation to be performed. Most EMACS commands can be
executed by typing an associated character sequence. All commands can be executed by typing
I Esc | f"x], followed by the command name.

EMACS Standard User Interface (SUI)
A version of the EMACS editor that assigns commands to function keys on the terminal
keyboard.

EMACS Standard User Interface with Extensions (SUIX)
A version of the EMACS editor that extends the EMACS SUI by incorporating both the bound
function keys and fundamental mode coinmands.

1-1

EMACS Reference Guide

function
One or more EMACS programming statements designed to accomplish a specific task.
Functions may be compiled and executed from the current buffer or they may be executed by
entering the function name at the PL: prompt.

fundamental mode
The default mode for EMACS. All commands are prefaced by either the Escape or the Control
key.

keybinding
The association of a keypath with a command.

keypath
The keystroke sequence that causes a command to execute. A keypath may have ten
keystrokes.

macro
A group of EMACS commands that is constructed and saved so that it can be executed as a
single command.

minibuffer
The second and third lines of the four lines at the bottom of your screen. EMACS uses the
minibuffer to issue prompts and messages that give instructions to the user.

mode
A method of operation. In EMACS, the mode determines which keybindings are in effect for
the EMACS commands.

prefix
A character sequence that precedes a command in EMACS. The most common prefix keys are
the Escape key and the Control key.

status line
The first line of the four lines at the bottom of your screen. The status line gives you
information about the current version of EMACS, the mode you are in, the name of the current
buffer, whether you have modified the buffer, and the pathname of your current work file.

window
A portion of the screen, after it has been divided horizontally or vertically. The sections are
separated by a line of dashes (- or I).

1-2

Getting Started With EMACS

EMACS Command Conventions
When you first invoke EMACS, you are placed, by default, in a working environment known as
fundamental mode. This environment contains a basic set of EMACS commands, which are
available for use at any time. All the EMACS commands in fundamental mode begin with either
the Control key (I ctri |) or the Escape key (I esc|). The Control key works like a shift key in
that you hold it down while you are typing the next character, you do not hold down the Escape
key. The following examples show how this convention is used in this book:

• | ctri x | (where x is any character) indicates that you must press the I ctri | key and hold
it down while you type the next character.

• | Escl | xx | (where xx is any character or string of characters) indicates that pressing the
key and typing the characters) are two separate actions.

Whenever you press I ctri | along with another character or press 1 Escl followed by another
character or sequence of characters, EMACS interprets what you have typed as a command. Any
characters you type that are not preceded by one of these keys are interpreted as text to be inserted
into your document To use EMACS successfully, you must have a terminal that has Escape and
Control keys so that EMACS can distinguish commands from ordinary text.
Prime supports two enhancements to fundamental EMACS, the EMACS Standard User
Interface (SUI) and the EMACS Standard User Interface with Extensions (SUIX). Both of
these interfaces enable a set of functions that are bound to the terminal's special function keys.
The EMACS SUI is limited to these functions. The EMACS SUIX enables you to use these
functions in addition to the fundamental mode commands. The EMACS Standard User Interface
Guide is a guide for both the EMACS SUI and the EMACS SUIX.

Note
Refer to the About This Book section for explanations of conventions
used in this book to indicate function keys in command formats and
text formats.

When you use the EMACS SUIX, SUIX command keybindings may overwrite fundamental
mode command keybindings. For example, on the PT200™ terminal, I Esc | |~n1 cannot be used for
the next_buf command because some of the SUIX function keys transmit character streams
beginning with I Esc| [¥], causing the I Esc| [n] to be usurped by the function keybinding. In this
case, the user would use 1 Esc| [~n~l (lowercase) for next_buf.

Functions
All EMACS functions are Prime EMACS Extension Language (PEEL) statements that can be
executed by typing I Esc 11 Esc j The PL: prompt appears in the minibuffer (see The Minibuffer
section later in this chapter) at the bottom of your screea Respond to the prompt by typing the
function name and its arguments, enclosed in parentheses. An example of executing the selfjnsert
function to produce an asterisk on your screen is shown below:

PL: (self_insert "*")
For more information about executing functions, see the EMACS Extension Writing Guide.

1-3

EMACS Reference Guide

Commands
EMACS commands are really Prime EMACS Extension Language (PEEL) functions that are
bound to sequences of keystrokes. For example, the I ctri n | command, which moves the cursor to
the next line, is bound to the function called next_line_command. When you type I ctriN |, you
are invoking the next_Iine_command function.
In most cases, EMACS commands are bound to keys that relate to the name of the function. You
do not need to know the names of these functions in order to use EMACS. However, as you
begin to customize EMACS, the names of these functions will be important. For this reason, the
dictionary section of this book (Chapter 3) lists the commands alphabetically by function name,
which is the same as the command name. The function name is also a good description of what a
command does. To help you identify a command name if you know only the keybinding,
Appendix A of this book lists all the EMACS commands alphabetically by keybinding.

Extended Commands
Other EMACS functions that are not bound to keystrokes are called extended commands. To
invoke an extended command, you type I Escl __Q. The Command: prompt appears in the
minibuffer. Respond to the prompt by typing the name of the command (the function name) and
pressing I Return I.
For example, to issue the save_all_files command, you type I Esc| [Tl. When the Command:
prompt appears in the minibuffer, type the following response:

Command: save_all_files

Keybindings
A keybinding is a sequence of characters (keypath) that EMACS uses to invoke a command. For
example, the keypath | ctrio | tells EMACS to invoke the delete_char command. Also, some
EMACS fundamental mode coinmands are bound to character sequences for special keys on your
terminal as well as to keypaths. These bindings vary depending on the type of terminal you are
using. For instance, the I ctrm | command deletes the character immediately preceding the cursor.
Most terminals have a Backspace key that does this as well.

The Point
Most EMACS commands take effect before or after point, the location in your text where editing
takes place. The current cursor position indicates the position of point, which lies between the
character on which the cursor rests and the one immediately preceding it. Point lies between these
two characters, and not on either one.

1-4

Getting Started With EMACS

r
r

Figure 1-1 illustrates the location of point in a line of text. Note that blank spaces and line
separators are considered characters even though they are not visible on the screen.

W O B D T W O B W O R D S
t t

P O I N T P O I N T

Figure 1-1
Location of Point

Giving Numeric Arguments to EMACS Commands
You can give a numeric argument to almost any EMACS command. In most cases, EMACS
interprets a numeric argument as a repetition count for the command following it.
An argument of 1 is the default for most commands, and it does not usually need to be specified.
Positive arguments repeat a command the specified number of times. Negative arguments repeat a
command the specified number of times in the opposite direction. For example, the I cm f 1
command moves the cursor forward one character without an argument. If you give I ctriF | an
argument of 10, the cursor moves forward 10 characters. If you give the same command an
argument of-10, the cursor moves backward 10 characters.
A few EMACS commands interpret certain arguments as command modifiers that change the
way the command takes effect. These unusual cases exist for convenience and are documented as
they come up. For example, the I ctrix | command without an argument "kills" all text on the
current line. If you give 1 ctriK | an argument of 0, it kills all text from point back to the beginning
of a line.

There are two ways to give numeric arguments to EMACS coinmands. The easiest way to specify
an argument is to precede a command with the Escape key, followed by an optional minus sign
and/or a digit or digits. For example,

C o m m a n d A c t i o n

I Esc | |~6l I ctri f | Moves the cursor forward six characters.
I Esc| [Tl | Esc| [b] Moves the cursor backward two words.
I Esc| [~~| [T| | ctri z | Moves the cursor down three lines.
I Esc | [TJ \T\ [Tj Inserts ten asterisks (*) into your text.

Note
Normal text characters, (* in the above example) act as text characters
when they are preceded by I esc | n.

The second way to specify an argument is by typing I ctriu |. The I ctriu | keystrokes have a
special use in passing numeric arguments to EMACS commands. The placement of I ctriu [,
directly preceding a command, or before or after a numeric argument, is strategic in determining
its effect

1-5

EMACS Reference Guide

There are three ways to use I ctriu |:

1. Before a command
2. After a numeric argument
3. Before a numeric argument

Typing I ctriu | before a command usually means to multiply by 4. In effect, typing I ctriu | once
passes the subsequent command an argument of 4; typing I ctri u | twice passes the command an
argument of 16; three times, 64; and so on. For example,

C o m m a n d A c t i o n
I ctriu [[Esc| [b~] Deletes four words following point.
I ctriu | PI Enters four dashes (-) into your text.
I ctriu 11 ctri u | Q_] Enters sixteen dashes (-) into your text.

Note
Normal text characters (- in the above example) act as text insert
characters when they are preceded by 1 ctriu |.

Typing I ctriu | immediately after a numeric argument multiplies the numeric argument by 4. For
example,

C o m m a n d A c t i o n

I Esc| [Tl | ctriu 1 PI Enters eight dashes (-) into your text.

Placing 1 ctriu | before a numeric argument, followed by a command, specifies the argument to
that command. In this case, I ctriu |functions the same way as !_____. For example,

C o m m a n d A c t i o n
I ctnu | [Tl | ctri f | Moves the cursor forward six characters. '^V
I ctriu | |T11 Esc I pi Moves the cursor backward two words.

Organization of the EMACS Screen
EMACS divides your screen into three areas, each one displaying different information. These
are:

• The text area
• The EMACS status line
• The minibuffer

The terminal's own status line remains at the bottom of the screen.

1-6

Getting Started With EMACS

Figure 1-2 illustrates a typical EMACS screea

f This line is an example of text created by EMACS

Text area

EMACS
status line
Minibuffer
(2 lines)
Terminal
status line

EMACS n (bname) * <DSKNAM>MYDIR>FILES>S2
Forward search: bypass

ONLINE DSR CHAR 2 PG GO SYSTEM RDY

Figure 1-2
A Typical EMACS Screen

The Text Area
The text area is the top 21 lines of the EMACS screea It contains the terminal's cursor and
displays the text you are editing. All of your editing changes take place in this area.

Messages In the Text Area: The top lines of the text area are sometimes preempted by some
information that is not part of your file. This information may be a result of certain EMACS
commands or messages from the system. This information does not alter your file in any way. It
disappears as soon as you type your next EMACS command.

Line Numbers: Text line numbers are not normally displayed in EMACS because EMACS is
not limited to treating text by line number. It performs faster without the number display. To issue
the line numbering command, type I Esc | [T|; when you see the Command: prompt in the
minibuffer, type the following response:

Command: #on

1-7

EMACS Reference Guide

The display changes to include a line number at the beginning of each line. Note that line
numbers do not become part of your file, but are displayed for your information only. To remove
line numbers from the display, type:

Command: #off

To learn whether line numbering is in effect, type the following:

Command: #

A message appears in the minibuffer telling you whether line numbers are on or off.

The EMACS Status Line
The EMACS status line is the fourth line from the bottom of the screen. (The bottom line on
some terminals gives terminal status information.) The status line displays useful information
about the text you are currently editing. It shows you what is going on in EMACS and why your
commands may not be interpreted in the standard way. If you are surprised by the way EMACS
has reacted to your commands, look at the status line for assistance.

Status Line Components: This section describes the components of the status line shown in
Figure 1-2. This line appears as follows in the display:

EMACS <n> <(bname)> * <DSKNAM>MYDIR>FILES>S2

where:

EMACS <n>

<(bname)>

<DSKNAM>MYDIR>FILES>S2

Indicates the version number of the EMACS editor
being used.
Is the name of the current buffer. (See Chapter 2.)
EMACS can maintain several buffers in one editing
session. Although you can edit only one buffer at a
time, multiple buffers make it easy to work with a
number of files. When you move from one buffer to
another, it is helpful to have the name of the buffer in
which you are currently working displayed on the
status line. Normally, a buffer takes its name from the
file it contains if the file is an existing file and has
been loaded from a disk.
Indicates that you have made unsaved changes to the
text in your current editing session. If a file has not
been altered since it was read in or saved, no asterisk
is present.
Is a standard PRIMOS® pathname. It describes the
tree structure leading to the file currently being edit
ed. In this case, the filename is S2, and it is identical
to the buffer name.

1-8

Getting Started With EMACS

Additional Information: The status line may display other useful information as the need
arises. For instance, if you type a line longer than 80 characters, the current terminal setting may
not permit all the text to be displayed. To tell you what position you have reached that is not
currently displayed, EMACS places the number of that column position at the far left of the
status line as soon as the cursor goes off the screen edge.

The Minibuffer
The two lines under the EMACS status line constitute the minibuffer. EMACS uses this area to
print responses to certain commands, to give instructions to the user, and to issue error messages.
For example, a prompt appears in the minibuffer in response to the I ctris | command. That
prompt and a sample response are as follows:

Forward search:- bypass

The next example shows the error message that appears in the minibuffer when you try to save a
file that you have not named:

No default file name for this buffer

f Entering the EMACS Environment
To enter the EMACS environment, type the following standard command line after the PRIMOS
OK, prompt (The examples in this book assume that the OK, prompt is used.)

EMACS [options]

The order of options is irrelevant. A command line with options is shown below:

EMACS pathname -TTP terminaljype

The EMACS command invokes the EMACS editor. All of the arguments are optional, although
you need to indicate the terminal type by one of the ways discussed below.

Pathname
EMACS was designed to be able to edit text files (files of characters) consisting of lines, each
terminated by a new line character. To edit an existing file, specify the pathname of that file on
the EMACS command line. (If it is a file in your current directory, you need to specify only the
simple filename.) EMACS then puts you into a buffer that has the same name as the specified
file. The contents of the buffer are displayed on the screen.
If you are creating a new file, you may specify a new name in the pathname, or you may omit the
pathname. In the latter case, EMACS puts you into a buffer called main. (See the Buffer and

1-9

EMACS Reference Guide

Window Commands section in Chapter 2 for more information about buffers.) You are then free
to enter text and to use all the EMACS facilities. If you decide to save the text in a new file, you
name the new file at the time of the save.

Note
A valid PRIMOS filename may begin with a hyphen. If you specify a
filename that begins with a hyphen as a command line option, and
accidentally, the filename is identical to a valid EMACS option
specifier, for example, -SUIX, the filename must be enclosed in single
quotation marks. The following command line invokes SUIX mode
and looks for a file named -SUIX.

EMACS ' -SUIX' -TTP PT200 -SUIX

Terminai Type
EMACS needs to know your terminal type. It checks the command line and the .TERMINAL_
TYPE$ global variable, looking for a terminal type definition. If it does not find a definition in
either of these places, EMACS prompts you to enter a terminal type interactively. If you specify
your terminal type as "unknown" or use an abbreviation that is not defined, EMACS responds
with an error message and does not let you continue.

Chapter 7 contains information about .TERMINALJTYPES and the TERMCAP database, and
also gives instructions for using EMACS with a non-Prime terminal.
Use the following format for the -TTP option on the command line:

-TTP terminal Jype

Your terminal type can be one of the three Prime-supported terminals (the PST 100™, PT200, or
PT45™) or it can be one of the terminals listed in the TERMCAP database,
EMACS*>TERM>TERMCAP. (The PT200W is not a separate model. The term refers to a ^^
PT200 that has been set up via the SETUP menu to work in 132-column mode.) '

Other Options
When you initialize EMACS, you can also specify any of the following options:

O p t i o n D e s c r i p t i o n
-ECHO_CPL Causes EMACS to perform screen updates while reading a

CPL or COMINPUT file. This option is viable only if EMACS
is invoked by CPL or COMINPUT.

-HEIGHT Sets terminal display at n lines.
-HELP Prints a list of available options.

1-10

Getting Started With EMACS

-NOXOFF

-NULEB

-SAVE SCREEN

-SPDT pathname

-SPEED,-bps

-SUI
-SUIX
-ULIB pathname

-WIDTH n

-XOFF

Tells EMACS to treat I ctris | and I cm q | as EMACS
forward_search and quote_command commands instead of
the PRIMOS stop and start print commands, which freeze and
unfreeze the terminal display. Allows I ctrix | | ctris | to be
used as EMACS save_file coinmand.
Tells EMACS not to look for either of the initialization files
EMACS*>TMT.EM or EMACS*>rMT.EFASL. With neither
the -ULIB nor the -NULIB option specified, EMACS
searches first for EMACS*>TMT.EM, then for
EMACS*>TMT.EFASL. The System Administrator can move
or rename the EMACS *>INIT.EM file or you can use the
-ULIB option to specify the EMACS *>IMT.EFASL file.
Saves the contents of your screen as it was when you invoked
EMACS. When you exit from EMACS, the cursor is restored
to its original location as it was just before you entered
EMACS. This option works only on the PT200 terminal in
48x80 display mode.
Turns on speed-type, the EMACS abbreviation handling envi
ronment, and loads in the file of speed-type abbreviations
named pathname, (See Chapter 5 for information about speed-
type.)
Sets the terminal display algorithm to use bps. Default bps is
9600. A value from 0 to 32,767 will be accepted as specified.
A value greater than 32,767 becomes the default (9600).
Invokes the EMACS Standard User Interface.
Invokes the EMACS Standard User Interface with Extensions.
Loads an EMACS library file and compiles it. (See the
EMACS Extension Writing Guide and Chapter 6 of this book
for more information on creating customized library files.)
Sets terminal display width to n columns. For most terminal
types, the default is 80 characters. On the PT200W terminal,
the default is 132 characters.
This is the default. Causes EMACS to treat I ctris | and I ctrio
as PRIMOS stop and start print commands (which freeze and
unfreeze the terminal display). When the -XOFF option is in ef
fect, you may use the sequences I ctrix 11 ctrio |, | esc| [Tl, and
I ctrix 11 ctris | to execute quote, forward_search_command,
and save_file, respectively. Use the -NOXOFF option to restore
the usual keybindings to I ctris | and I ctrio |.

1-11

EMACS Reference Guide

Abbreviating the Command Line
If you have an abbreviation file, you may define an abbreviation for your EMACS command line.
To construct your abbreviation, use the following format:

ABBREV -ADD.COMMAND abbrev_name EMACS [%1%] -TTP terminaljype [options]

where abbrev jiame is the name of the abbreviation you will use, and terminaljype indicates the
type of terminal you are using. Other options may be selected from the preceding list.
See the Prime User's Guide for information about creating abbreviations.

Saving Your Work
To save the changes you have made to one or more EMACS buffers, you must use one of the
following commands:

> > | c t r i x 1 1 c t r i s | s a v e _ fi l e
I ctrix 11 ctris | automatically saves the text in your buffer in a file of the same name. It does not
prompt you for a filename; the file must already exist.

^ | c t r i x 1 1 c t r i w | p a t h n a m e m o d _ w r i t e _ fi I e
I ctrix 11 ctri w | writes the text in your buffer to the file listed in the pathname that you specify. If
you specify a file that does not exist, EMACS creates it for you. If you specify a file that already
contains text, EMACS asks you if you want to overwrite the existing contents.

Note
The prefix "mod" before an EMACS command name signifies a
command that has been modified to make it more user-friendly. For
example, the write_file command writes the contents of a buffer to
the disk and overwrites an existing file with the same name without
prompting you. Mod_write_file does not overwrite an existing file
without first asking you if this is what you really want. Therefore,
mod_write_file is bound to I ctrix 1 | ctriw | because it is more user-
friendly than write_file. Generally, the "mod" version of a command
is the one that is bound to a keypath.

^ | esc| [x] write_file
This command is an extended command that works just like mod_write_fiIe, described above,
but it does not prompt you before overwriting existing contents of a file.

1-12

Getting Started With EMACS

Exiting From EMACS
You can exit from EMACS in the following ways:

The I ctrix | [ctric | command
• The I ctri p | character (PRIMOS break character)
• A recoverable error
• A forced logout condition

Each way is discussed below.

The i ctnx i |"cTc~| Command
You would normally exit from EMACS by issuing the quit command, or I ctrix 11 ctric |. This
command gets you out of EMACS and back to the process from which you invoked EMACS,
usually PRIMOS command level.
EMACS tries to prevent you from losing your work. If you have not saved modified buffers, or if
you have changed your speed-type environment, EMACS prompts you and gives you a chance to
save changes before you return to PRIMOS command level. You can save each modified buffer
individually or use I esc | [T| save_all_files. If you use the save_all_files command, those buffers
that have no associated disk files are lost.

The I~cTp~i Character
You may leave EMACS by typing I ctrip | (the standard PRIMOS break character). See the break
command entry in Chapter 3 for a complete description of the message that appears when you
type I ctri p | and for instructions on reentering your current file without losing any editing
changes.

A Recoverable Error
An error message advises users to type either REENTER (or REN) or START (or S) to recover
from a recoverable error that occurs within your EMACS environment

A Forced Logout Condition
If EMACS encounters a forced logout condition, it creates two types of recovery files in the
user's initial attach point directory. The files are in the following formats:

1. T$xxxxxxxxxxxx.EM.n
2. T$xxxxxxxxxxxx.EM.CPL

1-13

EMACS Reference Guide

For either type, the twelve x's represent a unique, system-generated sequence of characters. The n
suffix represents a positive integer.
EMACS creates one .EM.n file for every buffer containing unsaved changes. The file contains
the contents of the buffer at the time of the forced logout.
EMACS writes a single .EM.CPL file per forced logout. This file, if executed, copies each .EM.n
file into the corresponding disk file (providing that the buffer had an assigned default filename
associated with it). The user receives messages that give information about what is occurring.

A Locked Keyboard Condition
If, for some reason, your keyboard becomes locked during an EMACS session, first type I ctrio |
to undo a 1 ctris | that you may have typed. If that does not work, try turning the terminal off for a
few seconds, then on again. Use this technique when all else fails.

Basic EMACS Commands
The following table contains ten EMACS commands that allow you to use EMACS at a
rudimentary level. The next two chapters contain information about all of the current fundamental
mode commands.

Command
| Ctrl F |

| Ctrl B |

| Ctri N |

| Ctrl Z |

| CtrlD |

| Ctrl G |

| Ctrl P |

| Ctrl K |

| Ctri X | | Ctrl S |

| Ctri X | | Ctri C |

Table 1-1
Ten Basic EMACS Commands

Description
Moves the cursor forward one character.
Moves the cursor back one character.
Moves the cursor to the next line.
Moves the cursor to the previous line.
Deletes the character after point.
Aborts the most recent command or exits the minibuffer.
Interrupts an EMACS session; prompts you before breaking to
PRIMOS command level.
Kills the current line.
Saves a file.
Quits an EMACS session; prompts you if text changes are un
saved.

1-14

Summary of EMACS Commands
by Function

Introduction
This chapter lists all the current EMACS commands, grouped by functional category. Within each
category, commands are listed according to ease and frequency of use. Each group is introduced
by an explanation of the circumstances in which its commands are used. Commands that fall into
more than one category appear in more than one list, as appropriate.
The command list gives the name of the command; the keybinding, if any; and a brief
description. If a command does not have a keybinding, you can execute it by typing 1 Esc | |T| first
and responding to the prompt with the command name.

Appendix A contains a cross-reference list of EMACS commands arranged alphabetically by
keybinding. For more information about Help commands, see Chapter 4, Online Help Facility.
The speed-type facility is explained in Chapter 5, Speed-type. All of the commands in this chapter
are discussed in Chapter 3, Dictionary of Commands.
The following categories are described in this chapter:

• Help commands
• Cursor movement commands

Screen display commands
Editing commands

• File management commands
• Buffer and window commands
• Macros
• PRIMOS command execution
• General modes

o Dispatch tables
o Overlay mode
o Fill mode

•

•

2-1

EMACS Reference Guide

o View mode
o Explore mode
o Cursor-function/number modes

• Environment commands
• Iriformation commands
• Commands for slow terminals
• Library commands
• Speed-type commands
• Miscellaneous commands

Help Commands
EMACS has several online help facilities designed to help you with any given operation during
an EMACS session. Chapter 4, Online Help Facility, contains detailed information about these
facilities. Use the I ctri _ | (control underscore) command with its options to invoke online
EMACS help during an editing session. The I ctri _ | command is shown below.

Command Name
help_on_tap

Its options are as follows:

Option
A

C

D

Keybinding
Ctrl

Command Name
apropos

explain_key

describe

Description
Invokes help facility and lists
command options.

Description
Lists all commands related to an
operatioa
Tells what a command
keybinding does.
Provides detailed information
about coinmands and PEEL
statements.
Displays last twenty characters
you typed.
Lists help options.

2-2

Summary of EMACS Commands by Function

You can also invoke some of the same help options by typing I Esc| [T|, followed by the command
name, in answer to the prompt in the minibuffer. These help options are:

Command Name

apropos

describe

explain_key

Keybinding

"Ej^itn

Description
Alternate method of invoking the
A help option
Alternate method of invoking the
D help option
Alternate method of invoking the
C help option

Cursor Movement Commands
You can move the cursor (and point) to a different place on the current screen, or you can move it
forward or backward in the file enough so that the screen display changes to accommodate the
move. You can also scroll the screen display vertically or horizontally without changing the
cursor position.
The cursor indicates the location of point in the EMACS text. (Point lies between the cursor and
the character that precedes the cursor.) The following commands move the cursor to different
positions on your screen. These commands change the location of the cursor and point.

Command Name

forward_char

back_char

next_line_command

prev_line_command
beginjine

end_line

repaint

move_top

move bottom

Keybinding
Ctrl F

CtrIB

CtrIN

CtrIZ

Ctrl A

Ctrl E |

CtrIX | [W\

HUH

Esc | |T1

Description
Moves cursor forward one char
acter.
Moves cursor back one charac
ter.
Moves cursor down one line.

Moves cursor up one line.
Moves cursor back to the begin
ning of a line.
Moves cursor to the end of a
line.
Moves cursor to first column of
first line on screen.
Moves cursor to the beginning
of the buffer.
Moves cursor to the end of the
buffer.

2-3

EMACS Reference Guide

Command Name Keybinding Description
backward_sentence | Esc | | A | Moves cursor to the beginning

of the sentence.
forward_sentence |Esc|[_Ej Moves cursor to the end of the

sentence.
back_word i esc i rn Moves cursor back to the begin

ning of a word.
forward_word | Esc | | F | Moves cursor forward a word.
goto_Iine | Esc| [G] Moves cursor to a line whose

number is taken from the numer
ic argument.

back_to_nonwhite |Esc| [MJ Moves cursor to first nonwhite
character on line.

backward_para 1 Ctrl X | [[| Moves cursor to the beginning
of the paragraph.

forward_para 1 Ctrl X | |] | Moves cursor to the end of the
paragraph.

backward_clause | Ctri X | | Ctrl Z | | Ctrl A | Moves cursor back one clause.
forward_clause | Ctrl X | | Ctrl Z | | Ctrl E | Moves cursor forward one

clause.

Screen Display Commands
Vertical Movement
EMACS can display only one screenful (21 lines) of a file at a time. When you move point
vertically beyond the displayed section of your file, EMACS quickly generates a new display that
is centered around the new position of point.

Command Name Keybinding
next_page | Ctrl V |

back_page | Esc |[V]

refresh | Ctrl L |

Description
Scrolls screen display forward
18 lines.
Scrolls screen display back 18
lines.
Refreshes the screen.

2-4

Summary of EMACS Commands by Function

Horizontal Movement
A typical terminal screen line can display 80 characters at a time. When you type a line that is
longer than 80 characters, the cursor stops at the last column on your screen, but point continues
to move as the text extends beyond the display. The column number of point appears in the first
column of the status line.
To display extended text on the screen by wrapping it onto the next line, you can put fill mode in
effect and then type I Escl [q\. However, if you are in wide-screen display mode and you want a
line to extend and remain beyond 80 characters, you can use the following commands to view and
edit the extended text.

Command Name Keybinding Description
horizjeft | CtrIX |LU Shifts the current window to the

left 40 spaces.
horiz_right | Ctri X | | } | Shifts the current window to the

right 40 spaces.
hcol Sets or checks horizontal col

umn.
set_hscroll Prompts you for the hcol value

used in horizontal scrolling.
hscroll Uses current column position to

reset
set hcol.
Resets windows and columns.

r
r

Editing Commands
Editing commands enable you to insert, delete, move, search for, format, and save text. They also
let you control your mode of text editing and your screen display. The commands in this section
include the following categories:

• Inserting text
• Viewing nonalphabetic characters
• Deleting and restoring text
• The mark and the region
• The ring of marks
• Searching and replacing
• Case conversion
• Transposition
• Inserting new lines

2-5

EMACS Reference Guide

• Tabs and indentation
• Formatting
• Saving text and exiting from EMACS
• Abort, break, and reexecute commands

Inserting Text
This section describes commands and PI functions for typing text and controlling the screen
display. In fundamental mode, the characters you type are inserted into the file to the left of the
cursor position. Any other characters on the current line move to the right. To overwrite as you
type, use overlay mode.
Fill mode (on or off) determines whether the screen display is governed by the right margin.
When fill mode is on, as soon as you type a word that extends beyond the right margin, EMACS
automatically inserts a carriage return and moves the word to the left margin of a new line.

^ \

Command Name Keybinding
selfjnsert All the keys for all the

printable characters.
overlay_on
overlay_off
fill_on
fill_off

set_right_margin | CtrIX ill!

set_Ieft_margin

take_left_margin | Ctrl X | [J

tell_right_margin

tell_Ieft_margin

fill_para | Esc | [Qj

openjine | CtriO |

Description
Inserts a character into text
buffer. (PI function)
Turns on overlay mode.
Turns off overlay mode.
Turns on fill mode.
Turns off fill mode.
Sets right margin to specified
value.
Sets left margin to position of
cursor.
Sets left fill margin to column
containing the cursor.
Gives current setting of right
margin.
Gives current setting of left
margin.
Fills paragraph according to set
margins in fill mode.
Inserts a carriage return after the
cursor without moving the
cursor.

2-6

Summary of EMACS Commands by Function

Viewing Nonalphabetic Characters
To insert a nonalphabetic character, such as I ctn l |, | esc |, |tab|, or[____], you must precede it with
the I ctri q | command. This command tells EMACS to quote the character following it instead of
interpreting that character as an EMACS command. These special characters constitute a "blotch"
character which your terminal interprets as a question mark or a rectangular block.
On some terminals, 1 ctrio acts as the standard PRIMOS "start print" command instead of an

[~o~l instead. NeitherCtriXEMACS command. If this is the case on your terminal, type
Aq_quote_command nor quote_command can be executed as an extended command

Command Name
A q_quote_command

quote_command

Keybinding
CtrlQ

Ctri X Q

Description
Inserts a nonalphabetic character
into your text.
Identical to Aq_quote_command.

Deleting and Restoring Text
The commands in this section perform basic deletion tasks. The deleted text is not saved.

Command Name Keybinding
delete_char | Ctrl D |

rubout_char | Ctri H |

delete_blank_Iines | Ctrl X | | Ctri O |

delete_region

delete_buffer

merge_lines 1 Esc in
white_delete |Esc|[_J

Ieave_one_white | Esc | |SPACE|

Description
Deletes character after point.
Deletes preceding character.
Deletes blank lines immediately
above and below cursor.
Deletes current marked region;
does not save in kill ring. (See
next section.)
Deletes current buffer, does not
save in kill ring.
Merges two lines together.
Deletes all whitespaces around
cursor.
Deletes all but one whitespace
before cursor.

For most commands that can delete more than one character, EMACS saves the deleted text by
placing it on a stack called the kill ring. The ring contains the last 11 blocks of text that you
killed. If you kill two blocks of text in a row without using any commands in between, they are
saved as one block on the kill ring. You can "yank" text off the kill ring and restore it to any
position in any buffer at any time. You can also look at the text on the kill ring and delete a text
block that you do not want. There is only one kill ring, and it is not affected when you switch
buffers.

2-7

EMACS Reference Guide

The following commands let you delete or copy text and save it in the kill ring. The following
command lets you view the contents of the kill buffers:

Command Name

de!ete_word
rubout_word

kill_line

backward_kill_line

forward_kilI_sentence

backward_kill_sentence

forward_kill_clause
backward_kill_clause
kiIl_rest_of_buffer

killjregion

copyjregion

Keybinding
[___][__
| Esc| | CtriH

| Ctri K |

| CtrIX | | Ctrl K

fEiTlfKl

| CtrIX | | Ctrl H

| CtrIX | | Ctrl Z | | Ctrl K |

| Ctrl X | [~Ctrl"z~l | Ctri H |

Esc Ctri D

CtrlW

Esc I WI

Description
Deletes one word at a time.
Deletes previous word.
Deletes text from cursor to end
of current line.
Deletes text from cursor to be
ginning of line.
Deletes sentence from cursor to
end.
Deletes sentence from cursor to
beginning.
Deletes forward one clause.
Deletes backward one clause.
Deletes all text from cursor to
end of buffer.

Moves region between mark (see
next section) and cursor to kill
ring.
Copies region onto the kill ring.

The following command lets you view the contents of the kill buffers:

Command Name

view_kill_ring
Keybinding
| Ctrl X | Petri Z | |T|

Description
Lets you view contents of kill
buffers.

The following commands let you restore text from the kill ring:

Command Name

yank_region
yank_replace

yank_kill_text

Keybinding
| Ctrl Y |

!____][__

CtrIX | 1 Ctrl Z | \~cHvT

Description
Restores the last text deleted.

Replaces text restored by
yank_region with previously
deleted text.
Inserts at point text saved by
view_kill_ring.

2-8

Summary of EMACS Commands by Function

The Mark and the Region
Some EMACS commands operate within a defined portion of the buffer called a region. The
region contains the text between the mark and the current position of point. To define a region,
you first set a mark, which is invisible on the screen, and then move the cursor to the place where
you want the region to end. Use exchange_mark to confirm the boundaries of the region. This
command does not alter the region. Subsequently, any command that you issue that operates on
regions of text will take effect between the mark and the point only. The following commands
control the mark:

Command Name
mark

Keybinding
Ctri@

| CtrlU | | Ctrl @ |

The following commands manipulate regions:

Description
Places mark at cursor.
Moves cursor back one position
of mark on ring of marks. (See
mark command definition in
Chapter 3.)

setmark Sets mark at current cursor
position.

exchange_mark
mark_end_of_word

| Ctrl X | | Ctrl X |

| Esc | fJU
Exchanges cursor with mark.
Places mark at the end of the
current word.

mark_top | Ctrl X || Ctrl Z | | < | Places mark at top of buffer.
markjbottom
markjpara

| Ctri X || Ctrl Z | | > |

|Esc|[H]

Places mark at bottom of buffer.
Marks paragraph.

markjwhole | Ctri X | | H | Marks whole buffer as region.

Command Name Keybinding
IH
IH

Description
append_to_fiIe | Ctrl X || Ctrl Z Appends region to file.
prepend_to_file | Ctri X | | Ctrl Z Prepends region to file.
append_to_buf | Ctri X | | A | Appends region to buffer.
ki!l_region | Ctrl W | Moves region between mark and

cursor to kill ring.
prepend_to_buf
copy_region

1 Ctrl X | | P |

| E s c | [w l

Prepends region to buffer.
Copies region onto the kill ring.

2-9

EMACS Reference Guide

The Ring of Marks
As well as delimiting a region, the mark is also useful for remembering a position in your text.
EMACS stores 10 previous locations of the mark on a ring. The! ctriu 11 ctri@ | command returns
the cursor to the location of the preceding mark. You can keep cycling through the ring and back
to the most recent mark location.
The following commands work with the ring of marks.

Command Name

push mark

popmark

Keybinding
| CtrlU | | Ctrl <§>

Description
Moves cursor back one position
of mark on ring of marks.
Sets new mark and pushes the
old one onto the mark stack.
Pops a mark off the top of the
mark stack.

Searching and Replacing
The following EMACS commands are used for searching for a character string with the option of
replacing it with another. When EMACS performs any search for a character string, case
matching occurs by default. This means that if you ask EMACS to locate a character string that
you have typed in lowercase, it ignores any occurrence of the string that contains uppercase
letters. If you do not want case matching to occur during replace operations, you can turn it off
with the case_replace_off command (listed below) or the case_off command.

Command Name
A s_forward_search_comrnand

forward_search_command
forward_search_again
reverse_search_command

reverse_search_command
reverse_search_again
case_off

case on

Keybinding
| CtrlS |

| Esc | [T|

| Ctrl R |

1 Esc | [Rl

Description
Searches forward for specified
string.
Identical to I ctris | command.
Searches forward again.
Searches backward for specified
string.
Identical to 1 ctri r | command.
Searches backward again.
Causes EMACS not to
distinguish between cases of
letters during searching.
Causes EMACS to distinguish
between cases of letters during
searching.

2-10

Summary of EMACS Commands by Function

Command Name
case?

replace

query_replace

case_replace_off

case_replace_on

case_replace?

Keybinding

Esc | [%1

Description
Tells you whether cases are
distinguished during searching.
Searches for a string and
replaces all instances with
another.
Replaces the occurrence of one
string with another.
Treats uppercase and lowercase
letters the same during replace
operations.
Distinguishes uppercase letters
from lowercase during replace
operations.
Tells whether cases are
distinguished during replace
operations.

Case Conversion
The commands in this section perform case conversion for words and regions of text.

Command Name Keybinding Description
lowercase word Esc | |__J Changes word into lowercase.
uppercase word Esc | [0] Changes word into uppercase.
capinitial Esc | |_CJ Capitalizes first letter of word.
lowercase region Ctrl X | | Ctrl L | Converts region to lowercase.

uppercase region Ctrl X || Ctrl U | Converts region to uppercase.

Transposition
The commands in this section transpose characters or words.

Command Name
twiddle

transpose_word

Keybinding
CtrIT |

U l IH

Description
Inverts position of two charac
ters preceding cursor.
Inverts position of words before
and after cursor.

2-11

EMACS Reference Guide

Inserting New Lines
You may add new lines to your file, before or after a specific line, by using either of the
commands in this section. EMACS separates lines by inserting the carriage return (cr) character at
the end of a line to act as a line separator. You can insert and delete the cr character as you do
any other EMACS character, even though you cannot see it on the screea When EMACS creates
a new line, the cr is the only character that line contains. As more characters are added to the line,
they are inserted before the cr character.

Command Name
cr

openjine

Keybinding
Return

| Ctri O |

Description
Inserts carriage return into the
buffer at point.
Inserts a carriage return at cursor
without moving the cursor.

Tabs and Indentation
This section describes EMACS commands for indenting text and using tabs.

Command Name
cret indent relative

Keybinding
| Ctrl X 11 Return

indent_relative |esc|LlI

indent_to_fiH_prefix |Esc|| Ctri! |

spJit_line | Esc | | Ctri 0 |

centerjine | Ctri X | | Ctrl Z | | S |

type_tab | Ctrl 1 |

insert_tab | Ctrl X | | Ctrl 1 |

back_tab
settab
set_tab
set_tabs
tablist

Description
Inserts carriage return at current
cursor position; moves cursor to
new line, indenting left margin
to same column as previous line.
Indents current line with one
directly above it.
Moves line to left margin.
Breaks line at cursor and indents
next line at same column.
Centers current line of text.
Moves cursor forward to next
tab stop.
Inserts spaces to next tab stop.
Moves cursor back a tab stop.
Sets tab to any value.
Same as settab.
Same as settab.
Sets tab positions to a series of
set numbers.

2-12

Summary of EMACS Commands by Function

Command Name
settabs_from_table
or setft
default tabs

globaI_tabs
Iocal_tabs
save_tab

get_tab
which tabs

Keybinding Description
Sets tabs based on column
position of words.
Restores tab position to every
five spaces.
Activates global (default) tabs.
Activates local (to buffer) tabs.
Saves current tab positions in a
file.
Retrieves previously saved tabs.
Tells which tabs are in use.

Formatting
The following commands set margins and justify text within fill mode. (Fill mode is explained in
the General Modes section, later in this chapter.)

Command Name

set_right_margin

set_Ieft_margin

takejrightjmargin

take_left_margin

tell_right_margin

tell_left_margin

fill_para

untidy

Keybinding
CcjriT]H

| Ctrl X | | Ctrl Z | [¥]

CtrIX | [""I

[]___]___

Description
Sets the right margin to the
column you specify.
Sets left margin to position of
the cursor.
Takes right margin from current
cursor position. Column 10 is
cutoff point.
Sets left fill margin to column
containing the cursor. Useful
when doing a fill_para.
Gives current setting of right
margin.
Gives current setting of left
margin.
Fills paragraph according to set
margins.
Unjustifies a paragraph.

2-13

EMACS Reference Guide

Saving Text and Exiting From EMACS
You probably want to save new text or changes made to an existing file before you exit from
EMACS. If you quit without saving, EMACS notifies you which buffers have been modified and
prompts you to verify that you want to exit without saving.

Command Name
save_file

save_all_files
mod_write_fiIe

write_file

quit

Keybinding
| CtrIX | | Ctrl S
or | CtrIX I [J]

CtrIX | | CtrlW

CtrIX | | Ctri C |

Description
Saves file in PRIMOS under its
current name.
Saves all files you modify.

Prompts you before writing
buffer to file.
Writes buffer to named file.
Does not prompt.
Returns you to PRIMOS.

Abort, Break, and Reexecute Commands
You can abort an EMACS command if you have not finished typing it or have not typed I Return |.
You can break from the EMACS session and select one of three actions offered by the prompt.
You may also reexecute the last command that you typed.

Command Name
abort_command

ignore_prefix

PRIMOS break
(Not an EMACS
command.)

Keybinding
| Ctrl G |

| Ctri X | | Ctrl G |
Or I Ctrl X | | Ctri Z | | Ctrl G |

| Ctrl P |

reexecute CtrIC

Description
Aborts a command or exits
minibuffer.
Aborts a command.

Breaks from EMACS session
and prompts for choice from
three options:
Q - quit (return to PRIMOS
command level),
A - abort current command and
continue EMACS session,
C - continue EMACS session.
Reexecutes last command.

2-14

Summary of EMACS Commands by Function

File Management Commands
EMACS is designed to edit text files (files of characters) consisting of lines terminated by a new
line character.
If your user process has not been allocated an adequate number of dynamic segments, you will be
plagued by EMACS telling you NOT ENOUGH SEGMENTS and having many of your commands
(e.g., find_file, insertjbuffer) aborted. To avoid this problem, ask your System Administrator to
set your allowed number of dynamic segments to at least 100.

Note
EMACS uses segments in the 2000 range for its libraries. At Rev. 19.4
and later revisions, it allocates storage in the dynamic segments.

In EMACS, you can work with several different versions of the same file, or with several
different files, in one editing session. EMACS places the different versions or files in buffers, or
storage areas.
When you create an EMACS file, the file exists only in a temporary EMACS storage area, called
a buffer, until you save or write the file. If you exit from EMACS without saving or writing, the
new file is lost. Similarly, when you edit a file, you are not editing the actual disk file. You are
editing a copy of the file that EMACS has placed in a buffer. To make permanent changes to the
disk file, you must save the changes that you have made. If you edit a file and exit from EMACS
without saving the changes, the disk file remains as it was before you began the current editing
session.
The commands for reading and writing files are listed below.

Command Name Keybinding Description
find_file | Ctrl X | | Ctrl F | Finds a file and reads it into a

buffer named after the filename
found.

read_file | Ctri X | | Ctri R | Reads a file into current buffer.
savejfile | Ctri X | | Ctrl S | Saves file in PRIMOS under its

writejfile
Or | Ctrl X 11 s | current name.

Writes buffer to named file.
Does not prompt.

modjwritejfile

save_alljfiles
unmodify

| Ctrl X | | Ctrl W |

1 Esc | f£]

Prompts you before overwriting
file with buffer.
Saves all files you modify.
Treats buffer as if it were not
modified.

insertjfile | Ctrl X | | 1 | Inserts file at cursor.

2-15

EMACS Reference Guide

Buffer and Window Commands

Buffers
EMACS uses buffers as workspaces to hold and organize your files during an editing session.
The number of buffers that you may use in an EMACS editing session is determined by the
system resources.
Each buffer in EMACS has a name, which is always displayed in parentheses on the status line.
Normally, a buffer has the same name as the file it contains, but you can also create and name a
buffer independently. (A buffer name cannot be null.)
Even though you move from buffer to buffer, EMACS maintains the state of the text in each
buffer: which modes are in effect, the current cursor position, and whether there are unsaved
changes to the text.
The following commands let you manipulate buffers.

Command Name
mod select buf

select_biif

list_buffers
next buf

prev_buf

insert_buf
get_bufname

Keybinding
| Ctrl X | pT[

I CtrIX I |T| I Return

CtrIX |[~cTb~1

Esc | [Tl

EscP |

CtrIX | | Ctrl Z | [TJ

Description
Moves you to the specified
buffer.
Returns you to the previous
buffer.
Moves you to the specified buffer.
(Same as mod_seIect_buf.)
Lists all active buffers.
Replaces current buffer with the
next buffer. (See EMACS
Command Conventions section
in Chapter 1 for restrictions on
using |~Eic~] QTJ in the EMACS
SUIX.)
Replaces current buffer with the
previous buffer.
Inserts specified buffer at cursor.
Inserts current buffer name in
buffer at cursor.

Windows
EMACS allows you to divide your screen into horizontal or vertical sections, called windows, so
that you may compare files or edit more than one file at a time. The EMACS Primer contains
detailed instructions for working with windows in an editing session. Also, for more information

2-16

Summary of EMACS Commands by Function

about the commands in this section, see Chapter 3, Dictionary of EMACS Commands. This
section describes the commands for using multiple windows.

Command Name

mod_split_window

split_window

Keybinding
I Ctrl X | |T|

mod_split_window_stay I ctrix | [T|

split_window_stay

other_window

select_any_window

mod_one_window
one window

| CtrIX | |"o|

| Ctrl X | m

scrolI_other_forward I Esc| | ctriv
scroll_other_backward I ctrix | [Tl

vsplit

Description
Divides current window
horizontally into two windows.
Divides current window
horizontally into two windows.
(Same as mod_split_window.)

Splits current window; keeps
cursor in first window.

Splits current window; keeps
cursor in first window. (Same as
mod_split_window_stay.)
Moves cursor between current
window and previous window.

Cycles cursor through all
windows.
Transforms a split screen into one.
Transforms a split screen into one.
(Same as mod_one_window.)
Scrolls other window forward.
Scrolls other window backward.

Splits current window vertically
at point into two windows.

Macros
A macro is a group of EMACS commands that is constructed and saved so that it can be executed
as a single command. By using a macro, you can define a repetitive task as one command to
avoid typing the same sequence of commands over and over again. For example, if you find that
you need to type I ctri n | | ctri p | forty times, you can define a keyboard macro that executes
I ctriN 11 ctri d | and then give it an argument to repeat the command thirty-nine more times. The
following example shows the keystrokes you would use to define this macro, with explanations
of each group of keystrokes.

Keystrokes
| CtrIX IM
| CtriN | | Ctrl D |
| CtrIX IM

Description
Starts collecting the macro.
The actual macro.
Stops collecting the macro.

2-17

EMACS Reference Guide

Now, to execute the macro thirty-nine times, type:

| Esc| [Tl [Tl I CtrIX I pf|

Keyboard macros are useful for accomplishing specific tasks in EMACS. Chapter 12 in the
EMACS Primer gives detailed instructions for defining and executing EMACS keyboard macros.
However, if you want to write a function to do things that cannot be done using ordinary EMACS
commands, you must use PEEL, the Prime EMACS Extension Language. Chapter 2 of the
EMACS Extension Writing Guide explains how to construct a macro and convert it to PEEL
source code.

Note
An expand_macro command may not duplicate the actual sequence
of keystrokes that you entered from the keyboard if the sequence
includes bound function keys. For example, if a user creates a
keyboard macro using the Global Replace key, EMACS is inconsistent
in retaining the search and replace strings within the macro.

The following commands are used for defining, executing, and saving keyboard macros.

Command Name
collect_macro
finish_macro
execute_macro
expandjmacro

set_permanent_key

set_key

Pi

pLminibuffer

Keybinding
i ctri x i rn

I Ctrl X | in

Esc Esc

Description
Starts collecting macro.

Stops collecting macro.
Executes current macro.
Expands a stored macro into
PEEL source code with a given
macro name.
Binds function to a key for an
entire session.
Binds function to a key on a
per-buffer basis.
Compiles and executes source
code in current buffer.
Invokes PEEL.

2-18

Summary of EMACS Commands by Function

PRIMOS Command Execution
EMACS lets you execute a PRIMOS command while remaining in the EMACS environment To
do this, you use the primos_command command (I ctrix 11 ctriE |) and any of its prefixes. The
I ctrix 11 ctriE | command is shown below:

Command Name
primos_command

Keybinding
| CtrIX | | Ctrl E

Description
Executes a PRIMOS command.

Its options are as follows:

Option Name
primos_external

primos_internal_como

Form
no prefix

primos_internal_screen !!

Description
Command is executed as a
phantom.
Output is displayed in
file_output buffer.
Output of internal command is
displayed on new screen.

When you type I ctrix | | ctriE | or 1 Escx | primos_command, EMACS displays the PRIMOS
command prompt. When you select either ! or !! in response to the prompt, the option must
precede the selected PRIMOS coinmand.

General Modes
When you first initialize EMACS, you are in fundamental mode by default unless you specify the
EMACS SUI or the EMACS SUIX on your command line. In fundamental mode, all commands
are bound to certain characters on your keyboard. You execute EMACS commands by typing
these characters. However, depending on your needs, you can redefine fundamental mode
keybindings to change the way certain commands work. This feature in EMACS is called
changing modes.
You can change modes by asking for a different mode from your current EMACS file, or you can
place mode commands in your startup library file so that they are turned on when you invoke
EMACS. The section on file hooks in Chapter 6 tells you how to set your user type so that when
you are working on a specific kind of document, the mode that you need to edit that document is
turned on automatically as you enter EMACS.
An example of a mode that you can request is fill mode. This mode rebinds the space character to
a command that checks to see if you have typed past the right margin. If you have, it breaks the
line at the right margin and moves the last word you typed to the first column of a new line.
Modes take effect only in the buffers you specify. For example, you could use fill mode in one
buffer, switch to a new buffer and use overlay mode, and then switch to a third buffer and use

2-19

EMACS Reference Guide

view mode. Or, you could use more than one mode in one buffer. EMACS "remembers" which
modes are in effect in which buffer so you can switch back and forth without having to retype the
mode commands.

Whenever you put a mode in effect, its name appears in the status line to remind you that certain
commands behave differently while you are using that mode.

Dispatch Tables
In EMACS, functions are bound to keystrokes through a dispatch table. There is a special
dispatch table for each mode. When a mode is in effect, the dispatch table for that mode is used
first. When that mode is no longer in effect, the dispatch table definitions for the latest mode are
read. For more information about dispatch tables, see the EMACS Extension Writing Guide.
The following four general commands are helpful when using modes:

Command Name

set_mode

setjmodejkey
telljmodes
alljmodes_off
fundamental

Description
Sets buffer to specified mode.
Binds function to a key on a per-mode basis.

Displays all modes for buffer.
Turns all modes off.
Turns on fundamental mode.

Overlay Mode
In overlay mode, the characters you type overwrite existing text.

Note
When you are in overlay mode and two-dimensional mode, each line is
treated as an independent entity; you cannot use I ctrip | (delete_char) to
delete a carriage return character at the end of the current line, or I ctrm |
(rubout_char) to delete a carriage return character at the end of the
previous line. However, you can use I ctriK 1 (kill_line) to delete a
carriage return character at the end of the current line.

The commands and functions for turning overlay mode on and off are listed below.

Command Name Description

overlay_on Turns overlay mode on.
overlay_off Turns overlay mode off.
overlayjrubout Erases previous character in overlay mode.
overlayer Overlays typed character. (PI function)

2-20

Summary of EMACS Commands by Function

Fill Mode
In fill mode, as soon as you type a word that extends beyond the right margin, EMACS
automatically inserts a carriage return and moves the word to the left margin of a new line. The
following commands turn fill mode on and off.

Command Name
fill_on
fill_off
wrap

Keybinding

SPACE or Return

Description
Turns on fill mode.
Turns off fill mode.
Inserts carriage return.

View Mode
When view mode is in effect, the current buffer becomes a read only buffer. If you try to use any
commands that modify text, EMACS responds with an error message. View mode also has some
options to make it easier to move through the buffer.
The commands for turning view mode on and off are listed below.

Command Name
view_on
view_off
view_file

view

Keybinding

| CtrlU | I Ctrl X I | Ctrl V

| CtrIX | | Ctrl V |

Description
Turns view mode on.
Turns view mode off.
Allows viewing of file. Only
view mode command options
can be used.
Same as view_file except that
bound function keys can be
used.

The following view mode command options (keystrokes) allow you to move through the buffer
in view mode:

Option Description
SPACE Moves cursor forward a screen.
B Moves cursor back one screen.
> Moves cursor to start of text.
< Moves cursor to end of text.
R Executes reverse search.
S Executes forward search.

2-21

EMACS Reference Guide

Explore Mode
Explore mode allows you to look through and make changes to directories and subdirectories
without leaving EMACS. The following command activates explore mode:

C o m m a n d N a m e K e y b i n d i n g D e s c r i p t i o n
explore I c t r ix | [TJ Turns on explore mode.

You can use the standard cursor movement commands when you are looking at a directory listing
in the explore buffer. In addition, there are options having special meaning in explore mode. You
can execute these keystroke options only from the explore buffer.

O p t i o n D e s c r i p t i o n
H or ? Displays a list of explore mode commands.
<3> Attaches to current explore directory.
A D isp lays a t t r i bu tes on sc reen .
C or N Creates a fi le.
D or G Displays directory or file specified by cursor.
K Deletes fi le specified by cursor.
L Updates information for current directory.
0 Sets spool options for explore mode.
P Dives into a passworded directory.

Q Quits and returns you to previous buffer.
R Renames or relocates file/directory.
S Spools fi le specified by cursor.
U Moves you up a level in directory.
1 ctrix | (TTJ Moves you to the next highest directory level from within a

file.
When you are looking at actual text in a file, any of the normal EMACS commands work.
You can leave explore mode by issuing one of the buffer or file commands, for example, _____
fn (prevjbuf). or by displaying a file. For more information about explore mode, see the
Dictionary of EMACS Commands section in Chapter 3.

Cursor-Function/Number Modes
The group of keys on the lower right side of the PT200 terminal's keyboard is called the Cursor-
Function/Number (CF/N) pad. When you are in the EMACS SUIX, you can change these keys
from cursor-function mode to number mode with the Num Lock key, located at the far left of the
top row of the pad.

2-22

Summary of EMACS Commands by Function

When you are in cursor-function mode, the pad sends several different Esc sequences to the host,
which the EMACS SUI uses for cursor control and similar functions. You can bind your own
functions to the CF/N pad while in cursor-function mode. Number mode (which causes the Num
Lock light to turn on) lets you use keys on the pad to type numbers and other symbols etched on
the sides of the keys.
On the PT200, when you enter EMACS in fundamental mode, the value of your CF/N pad switch
determines whether the pad is in cursor-function or number mode.

Environment Commands
This section lists the EMACS commands that create environments. The list includes commands
for these environments:

• Line numbering
• Continuous lines environment (two-dimensional mode)

Line Numbering
EMACS does not use line numbering by default. You can enable and disable line numbering by
using the following commands:

Command Name Keybinding Description
#on Numbers lines on screen.
#off Takes line numbers off screen.
Tells you if line numbering is

gotojine fE^n rol
effect.
Moves cursor to a specified line.

Continuous Lines Environment (Two-dimensional Mode)
This environment is put into effect automatically as part of overlay mode. When you use I ctriN |
(next_line_comrnand) or 1 ctriz | (prev_line_command) in the continuous lines environment, the
cursor maintains its column position, regardless of the length of the new line. To invoke this
environment, use the following commands.

Command Name
2don
2doff
2d

Description
Turns two-dimensional mode on.
Turns two-dimensional mode off.
Tells you if two-dimensional mode is on.

2-23

EMACS Reference Guide

Information Commands
Some EMACS commands give you information about what is going on in EMACS and others
give you general information such as the date and time. All commands in this section are
discussed in detail in Chapter 3.

Command Name Keybinding
display_debug

displayjbuffer
displayjterminal
displayjwindow
tell_position I CtrIX |__J

telljmodes
getjbufname

getjfilename | Ctri X || Ctri Z || Ctri F |

dt

date

europe_dt

trim_dt

trim_date

sort_dt

insert_version
new_features

wallpaper

Description
Displays information about debug. A single
keystroke clears the display.
Displays information about current buffer.
Displays information about your terminal.
Displays information about current window.
Minibuffer message gives line and cursor
position.
Displays all modes for buffer.
Inserts current buffer name into buffer at
cursor.
Inserts pathname of file in current buffer
into buffer at cursor.
Inserts date and time:
12/29/86 09:59:37
Inserts day, month, year:
MON, 29 DEC 1986
Inserts date in the European format:
29/12/86
Inserts month, day, year:
12/29/86
Inserts day, month, year:
29 Dec 1986
Inserts year, day, month:
86/12/29
Inserts version of EMACS used.
Displays the Info file found in
EMACS*>INFO>NEW_FEATURES_INFO.
Lists all EMACS commands and functions.

2-24

Summary of EMACS Commands by Function

Commands for Slow Terminals
EMACS is designed to be used on a display terminal on a line that supports at least 1200 baud. If
you are using EMACS at a slower baud rate, you will find it helpful to use the commands
described in this section.
Because EMACS is a full screen editor, nearly every command you type causes the terminal
display to change. This information exchange between the terminal and the computer can be very
time consuming at a slow baud rate.
The commands described below are designed to enhance the performance of EMACS on a slow
terminal.

Command Name

togglejredisplay
view lines

Keybinding
| Ctri X | | Ctrl T |

| CtrIX | | CtrIZ 1 | Ctrl V

Description
Toggles the redisplay mode.
Views lines toggled off.

Library Commands
The following commands are used when compiling and executing library files. See Chapter 6 for
information about creating, compiling, loading, and executing library files.

Command Name
dump_file

load_compiled
loadjpLsource
set_user_type

Description
Partially compiles a PEEL file in the current buffer to a
fasdump file with .EFASL suffix.
Loads a fasdump file saved with the dumpjfile command.
Compiles and loads the source code in a PL source file.
Sets the user type for file hook procedure.

Speed-type Commands
The speed-type facility offers the potential for substantial savings in time and effort during text
entry. Refer to Chapter 5, Speed-type, for a complete explanation of how to use this EMACS
facility.

Command Name
spd_on

spd_off

Keybinding Description
Turns on speed-type
abbreviations.
Turns off speed-type
abbreviations.

2-25

EMACS Reference Guide

Command Name
spd_add
spdjist

spd_save_file

spd_delete
spd_list_file

spd_list_all

spd_load_file

spd_compi!e

spd_add_modal

spd_add_region

spd_unexpand

back_place_holder

forward_place_holder

Keybinding

r~cwin

CtrIX | m

Description
Adds a speed_type abbreviation.
Gives information about specific
symbol.
Saves changes made to current
speed-type environment.
Deletes speed-type abbreviation.
Lists abbreviations for specific
file.
Gives information about all
speed-type abbreviations.
Loads a speed-type abbreviation
file.
Compiles current buffer into
speed-type file.
Adds abbreviation for specific
mode.
Defines a region as expansion of
speed-type abbreviation.
Removes expansion from current
buffer.
Moves to previous speed-type
place holder.
Moves to next speed-type place
holder.

Miscellaneous Commands

Command Name
extend_command

multiplier
abort minibuffer

Keybinding
i Esci m

Cc_L_G
I CtrIG |

Description
Prefix that lets you execute any
EMACS command.
Multiplies prefix count by 4.
Aborts minibuffer. Used in
minibuffer mode.

2-26

Summary of EMACS Commands by Function

Command Name
exit_minibuffer

yank_minibuffer

Keybinding
| Return |

rEj^rcirvn

Description
Exits minibuffer. Used in
minibuffer mode.
Inserts the response to the pre
vious minibuffer prompt into
your current buffer.

2-27

Dictionary of EMACS Commands

Introduction
This chapter is a dictionary. It contains all of the standard EMACS commands, arranged
alphabetically by command name. Names that begin with nonalphabetic characters are at the
beginning of the list. If the command is normally bound to a keypath, the keybinding is displayed
on the same line as the command name. The keybindings in this chapter are for EMACS
fundamental mode.

Note
When you type a command name or a keybinding, you can use either
uppercase or lowercase letters.

Dictionary of Commands

▶ #

This command tells whether the line numbering environment is in effect. One of the following
messages appears in the minibuffer:

Line numbers are off

or

Line numbers are on

▶ #off
This command turns off line numbering and removes the number from the left of each line on
your screen.

3-1

EMACS Reference Guide

▶ #on
This command turns on line numbering, so that the number of each line appears at the left of your
screen. These numbers are not actually part of your file.

▶ 2d
This command tells whether the continuous lines environment (two-dimensional mode, described
in Chapter 2) is on. One of the following messages appears in the minibuffer:

2d is on

or

2d is off

▶ 2doff
This command turns the continuous lines environment off.

▶ 2don
This command turns the continuous lines environment on. If you move the cursor to a line that is
shorter than the current one, this environment keeps the cursor in the column it just left.
This environment is automatically put in effect as part of overlay mode.

Note
When you are in overlay mode, with 2d in effect, each line is treated
as an independent entity, so that you cannot use I ctri d | to delete a
carriage return character at the end of the current line, nor can you use
I ctrm | to delete a carriage return character at the end of the previous
line. However, you can use I ctriK | to delete a carriage return character
at the end of the current line.

▶ A q _ q u o t e _ c o m m a n d 1 c t r i o .
If you need to insert a nonprinting character that you type literally, such as I ctri f |, | esc 1.1 tab |. or
I del|, you must precede it with the I ctrio 1 command. This command tells EMACS to "quote" the
special character following it instead of interpreting that character as an EMACS command.
These special characters are usually displayed on your screen as question marks (?) or as
rectangular blocks.

3-2

Dictionary of EMACS Commands

Note
If you do not use -NOXOFF as an option on your EMACS
initialization line, I ctrio | acts as the standard PRIMOS start print
command instead of an EMACS command. If this is the case, type
I ctrix | fol to effect the quote.

Neither Aq_quote_command nor quote_command can be executed as an extended command.

▶ A s _ f o r w a r d _ s e a r c h _ c o m m a n d I c t r i s)
This command is the same as the forward_search_command command. It searches forward in
your current buffer for the first occurrence of the string of characters specified in response to the
minibuffer prompt. If the cursor is in the middle of a file, EMACS searches only the text
following the cursor.
When you type I ctris |, you see the following prompt in the minibuffer area:

Forward Search:

Enter the string of characters you want to find. Keep in mind that spaces are treated as characters, and
uppercase characters are considered different from lowercase characters (except when case_off has
been used).
When the string is found, the cursor moves to the first character following it. For example, if you
search for the string bed and EMACS finds it in the larger string abcde, EMACS moves the
cursor to the e. Point is after the d.
If EMACS cannot find the specified string, the following message appears in the minibuffer:

Not found:

followed by the character string. The position of the cursor does not change.

Note
If you do not include the -NOXOFF option on your EMACS
initialization line, I ctris l acts as the standard PRIMOS stop print
command, which freezes the terminal display. To avoid this, you can
substitute the I esc | [~s~| command for I ctris |.

▶ a b o r t _ c o m m a n d I c t r i G |
The abort_command command aborts a partially entered EMACS command. When an EMACS
prompt appears in the minibuffer, | ctriG | causes the terminal to beep, and the cursor returns to
the current file.

3-3

EMACS Reference Guide

▶ a b o r t _ m i n i b u f f e r | c t r i G
This command is the same as the abort command command.

▶ all_modes_off
This command turns off all modes in the current buffer. It does not affect modes that you have
turned on in other buffers.

▶ a p p e n d j t o j b u f I c t r i x | [T l
This command deletes the current region and appends it to the buffer you specify. It prompts you
for a buffer name. If you specify a buffer that does not exist, EMACS creates a new one for you.
When the region is appended, EMACS displays the following message:

Region appended

To view the appended text, you must switch to the buffer that contains it.
If you preface this command with a numeric argument other than 1, EMACS copies the region
without deleting it.

▶ a p p e n d _ t o _ f i l e | c t r i x 1 1 c t r i z | [a]
This command deletes the current region and appends it to the file you specify. It prompts you for
a filename. If you specify a file that does not exist, EMACS creates a new one.
When the region is appended, EMACS displays this message:

Region appended

If you preface this command with a numeric argument other than 1, EMACS copies the region
without deleting it.

▶ a p r o p o s I c t r i _ 1 1 X 1
This command displays an extended list of commands and functions that relate to your response
to the Apropos: minibuffer prompt. For more information about this command, see Chapter 4,
Online Help Facility.

▶ b a c k _ c h a r I c t r i b |
This command moves the cursor backward one character on the current line. If the cursor is at the
beginning of a line, the command moves it across the line separator to the end of the previous
line. If the cursor is at the beginning of the buffer, .1 ctriB | does nothing.

3-4

Dictionary of EMACS Commands

▶ b a c k _ p a g e I E s c | [_ _
This command moves the screen display back one page. The three lines at the top of your current
screen move to the bottom of the new screen. The cursor is placed at the beginning of the line in
the middle of the display, except at the beginning or end of the file.
You may specify a number of pages to move back by giving a numeric argument to this
command.

▶ b a c k _ p l a c e _ h o l d e r I c t r i x | [7]
This is a speed-type command that moves the cursor to the previous placeholder. The cursor is
positioned on the first character in the placeholder. (See Chapter 5, Speed-type, for more
information about this coinmand.)

▶ back_tab
This command moves the cursor back a specified number (indicated by the numeric argument) of
tab settings.

▶ b a c k _ t o _ n o n w h i t e 1 E s c l _ _ _

^^ This command moves the cursor back to the first nonwhite character on a line.

▶ b a c k j w o r d | e s c | \ T \
This command moves the cursor back and positions it on the first character following the first
space it encounters.

^ ^ ▶ b a c k w a r d _ c l a u s e | c t r i x | r c t r T z ~ [| c t r i A |
This command moves the cursor backward the specified number (indicated by the numeric
argument) of clauses to the character preceding the last punctuation mark.

▶ b a c k w a r d _ k i l l _ c l a u s e I c t r i x 11 c t r i z 11 c t r m |
This command kills all characters backward from the current cursor position to the last
punctuation mark (. ? , or !).

▶ b a c k w a r d _ k i l l _ l i n e I c t r i x 1 1 c _ i k |
This command kills all text backward from the current cursor position to the beginning of the
line.

3-5

EMACS Reference Guide

▶ b a c k w a r d _ k i l l _ s e n t e n c e I c t r i x 1 1 c t r m 1
This command kills text backward from the current cursor position to the last sentence delimiter
(. ? or !), or to the beginning of text if no delimiter is encountered.

▶ b a c k w a r d _ p a r a I c t r i x [| " T 1
This command moves the cursor back to the beginning of the paragraph.

▶ b a c k w a r d _ s e n t e n c e | E s c | [a]
This command moves the cursor to the character following the previous sentence delimiter (. ? or!).

▶ b e g i n j i n e I c t r i A |
This command moves the cursor back to the first character of the current line. If the cursor is
already at the beginning of a line, it does not move.

▶ b r e a k (P R I M O S c o m m a n d) I c t r i p |
I ctri p | is the PRIMOS break character. It aborts any command in progress, takes you back to
PRIMOS command level, and prompts you with the following message:

Control-P typed.

To really Quit from EMACS, type Q
To return to EMACS and Abort the current command (if
any), type A
To return to EMACS and Continue with no interruption,
type C

Confirm your choice with the Return key.
Typing the Return key without making a choice is the
same as Continue.

(If no EMACS command was executing when you typed
Control-P, then Abort is the same as Continue.)

You may need to refresh the screen if you choose to
re-enter EMACS.

C, A, or Q:

3-6

Dictionary of EMACS Commands

If you type Q to quit from EMACS, any changes that you have not saved during the current
session are lost. All responses other than a I Return | or Q, A, or C preceding a I Return | result in the
repetition of the last prompt line.

▶ c a p i n i t i a l I E s c | [c]
This command capitalizes the first letter of the current word and puts the remainder of the word
in lowercase.

▶ case?
This command prints a message in the minibuffer telling whether case matching is currently
enabled.

▶ case_off
This command turns off case matching during a search. After you type this command, EMACS
prints a message in the minibuffer confirming that cases will be ignored when searching.

▶ case_on
This command turns on case matching during a search. After you type this command, EMACS
prints a message in the minibuffer confirming that cases will be looked at when searching.

▶ case_replace?
This command prints a message in the minibuffer telling you whether case matching is currently
enabled for the replacement commands.

▶ case_replace_off
This command disables case matching when searching during replace operations.

▶ case_replace_on
This command enables case matching when searching during replace operations.

▶ c e n t e r J i n e | c m x 1 1 c t n z | [s]
This command centers the current line of text according to the margins you have set for fill mode.
If you type this command with an argument, it centers the number of lines that you specify,
beginning with the current one.

3-7

EMACS Reference Guide

▶ c o l l e c t _ m a c r o I c t r i x | [J J
This command starts defining a keyboard macro. Anything that you type after issuing the
collect_macro command becomes part of the macro definition until you issue the finish_macro
command.
After you issue this command, the notation {Macro} appears on the status line confirming that
you are defining a keyboard macro.

▶ c o p y _ r e g i o n I E s c l [w i
This command places a copy of the current region in the kill ring. It does not delete the region
from the buffer or move the cursor.

▶ C r | R e t u r n |

This command moves the cursor and any text after it to the beginning of a new line. If you press
1 Return | at the end of a line, EMACS moves the cursor to the beginning of a new line. If you press
I Return | at the beginning of a line of text, EMACS moves the cursor and the entire line of text
down to a new line.

▶ c r e t _ i n d e n t _ r e l a t i v e I c t r i x 1 1 R e t u r n 1
This command inserts a carriage return into the text, moving the cursor and any text on the line
following it to the beginning of a new line. The new line is indented to the first nonwhitespace
character of the previous line.

▶ date
This extended command inserts the current date into your text at the current cursor position. The
date appears in the following format:

WED, 10 DEC 1987

▶ default_tabs
This command restores tab positions to the default of every five spaces.

▶ d e l e t e _ b l a n k J i n e s I c t r i x 1 1 c t r i o
This command deletes all blank lines immediately following or preceding the current cursor.

^ >

3-8

Dictionary of EMACS Commands

▶ delete_buffer
This command deletes all text in the current buffer without placing it on the kill ring.

▶ d e l e t e _ c h a r | c t r i p |
This command deletes the character under the cursor, causing the text on the line to the right of
point to shift left. If you type I ctrip |at the end of a line, the command deletes the line separator
and appends the next line to the current one.

▶ delete_region
This command deletes the current region without placing it on the kill ring. Because this
command does not save text, be sure to check the boundaries of your region, using I ctnx 11 ctrix 1
(exchange_mark), before issuing it

▶ d e l e t e _ w o r d [_ _ _] Q H
This command deletes the word or partial word following point and places it on the kill ring.

▶ d e s c r i b e I c t r i _ I [5]
The describe command is one of the options of the EMACS online help command. See Chapter
4, Online Help Facility, for instructions on using the command.

▶ display_buffer
This command displays information about your current buffer at the top of your screen. The
display tells you the name of the buffer, the pathname of the default file, and whether the buffer
has been modified. It also tells the current modes that are on and gives mark and cursor
information. Any keystroke clears the display.

▶ display_debug
This command displays information at the top of your screen about the debugging facility. Any
keystroke clears the display.

▶ display_terminal
This command displays terminal information at the top of your screen. It tells you the terminal
type and gives other information such as the height and width of your screea

3-9

EMACS Reference Guide

▶ display_window
This command gives information about your current screen, such as the line numbers of the top
and bottom lines, and the numbers of the far left and far right columns.

▶ dt
The dt command inserts the date and time into your text at the current cursor position. An
example of the format used is shown below:

03/12/87 16:35:54

The date shows the month first, followed by the day, then the year.

▶ dumpjfile
This extended command partially compiles the PEEL statements in the current buffer and dumps
them in fasdump format to a file with an .EFASL suffix. To make the coinmands defined in the
file available to EMACS, load the partially compiled file with the load_compiled extended
command.

▶ e n d j i n e I c t r i e |
This command moves the cursor to the line separator at the end of the current line. If the cursor is
already at the end of a line, it does not move.

▶ europe_dt
This command inserts the date into your current buffer in the following format:

12/3/87

The day is followed by the month, then the year.

▶ e x c h a n g e _ m a r k I c t r i x 1 1 c t r i x |
I ctrix | | ctrix | exchanges the positions of the mark and the point. The point (and the cursor)
moves to where the mark was set. The mark moves to the position of point at the time the
command was issued.
Since the boundaries of the region remain unchanged when you use this command, you can use it
to check the boundaries before you make regional changes. You can also mark a place in text that
you want to refer to often from anywhere else in the text. Using I ctrix 11 ctrix | as a toggle lets
you view the marked area and then return to your current position.

3-10

Dictionary of EMACS Commands

▶ e x e c u t e _ m a c r o I c t r i x | [s]
This command executes the most recent macro that you have defined during the current editing
session. To repeat the execution of this command, you can give it a numeric argument.

▶ e x i t _ m i n i b u f f e r I R e t u r n I
This command returns you from the minibuffer to your current cursor position. The command is
bound to the Return key in minibuffer mode only.

▶ expandjmacro
This command expands your most recent keyboard macro into a function, using the PEEL
language. It then prompts you for a name. (If you do not want to give the macro a name, press
I Return |.) The command then inserts the source code for this function into the current buffer. You
should save the code in a file for later use.
An expandjmacro command may result in a series of statements that do not necessarily
correspond on a one-to-one basis with the sequence of keystrokes that a user enters from the
keyboard.

▶ e x p l a i n _ k e y | c t r t _ c | o r I E s c | | T |
This command is an alternate method of invoking the online help facility that explains a keypath.
See Chapter 4, Online Help Facility, for more information about this command.

▶ e x p l o r e 1 c t r i x | [b ~]
This command puts explore mode in effect With explore mode, you can look through directories
and read and edit files without leaving EMACS. When you issue the command, EMACS prompts
you for the name of the directory you want to explore. If you want to explore your current
directory, press I Return |. Otherwise, type the full pathname of the directory you want.
EMACS then switches you to a special "explore" buffer that alphabetically lists first the
directories and then the files that are contained in the directory you specified. While you are
looking at a directory listing, you can use the explore mode command options that are listed in
Table 3-1.

3-11

EMACS Reference Guide

Table 3-1
Explore Mode Options

Option Description
Hor? Displays a list of explore mode commands.
@ Attaches to current explore directory.
A Displays attributes on screen.
CorN Creates a file.
DorG Displays directory or file specified by cursor.
K Deletes file specified by cursor.
L Updates information for current directory.
0 Sets spool options for explore mode.
P Dives into a passworded directory.
Q Quits and returns you to previous buffer.
R Renames or relocates file/directory.
S Spools file specified by cursor.
u Moves you up a level in directory.

Moves you to the next highest directory level from within a file.| Ctri X | | U |

If you press D while the cursor is positioned on a filename, the contents are displayed. You can
edit and save the changes in this text using any of the normal EMACS commands. To return to
explore mode from the file text, type I ctrix | [TTJ.
To get out of explore mode, move out of the explore buffer. If you want to exit from EMACS,
use any of the interrupt or exit commands.

^ \
▶ extend_command "Escirxl

This command allows you to execute an EMACS command that is not bound to keystrokes by
typing I Esc| [xl, followed by the command name. For example,

I Esc| [TJ global_tabs

▶ filLoff
This coinmand turns off fill mode. Fill mode is explained in Chapter 2.

3-12

Dictionary of EMACS Commands

▶ fill_on
This command turns on fill mode. Fill mode is explained in Chapter 2.

▶ f i l l _ p a r a U E l I o]
This command fills and optionally adjusts a paragraph. The filling is done within the constraints
of the margins as they are currently set.
A numeric argument greater than 2 to fill_para signals that the paragraph is right-justified as well
as filled. An argument of 1 or -1 disables justification. If the argument to this command is less
than 0, you cannot create a list type paragraph.

▶ f i n d _ f l l e I C t r I X | | C t r I F 1

This command looks for the filename that you specify in response to the prompt. EMACS
searches first among EMACS buffers and then among disk files for the filename. When the file is
found, EMACS displays the contents on your screen. You may use EMACS editing commands to
make changes to the file.
If you try to find a file having the same name (but a different pathname) as one you have already
created, found, or read, EMACS tells you that a buffer of that name exists and gives you the
pathname of its contents. It prompts you for a new buffer name. If you enter a new name,
EMACS creates a new buffer and reads the file into it. (If you foresee this situation, you can
create a new buffer ahead of time using I ctrix | [il (select J>uf) and then read the file into it
using I ctrix | | ctrir | (read_file). Be aware that if you make changes in the text of this new
buffer and save them using I ctrix 1 | ctris | (save_file), EMACS does not write to a new file
named after the new buffer, but overwrites the file that you found or read in.

Note
If you want to work with a file from another directory requiring a
password, you must precede the pathname you specify for I ctrix |
1 ctri f | with a tilde (~). For example, if you want to find a file called
SECRET in the directory <DSKNAM>CLASSIFEED, requiring the
password FISH at the Find file: prompt you would type the
response in the following format:

~<DSKNAM>CLASSIFTJED FISH>SECRET

Note that the tilde (~) character is placed before the entire pathname,
and the password follows the name of the directory (separated by a
space) that requires it.

3-13

EMACS Reference Guide

▶ f i n i s h _ m a c r o I c t r i x | [7 1
This command signals EMACS that you have finished defining a keyboard macro. Any
commands that you issue following this command are treated as normal EMACS commands and
are not included in the macro definition.
When you issue this command, the {Macro} notation disappears from the mode line.

▶ f o r w a r d _ c h a r | c t r i F |
I ctri f | moves the cursor forward one character position on the current line. If the cursor is at the
end of a line, it moves over the line separator to the first character on the next line. If the cursor is
at the end of the buffer, I ctri f | does nothing.

▶ f o r w a r d _ d a u s e I c t r i x | [c t r i z 1 1 c t r i E 1
This command moves the cursor forward one clause, leaving it on the character following the
first punctuation mark it encounters.

▶ f o r w a r d J d l l _ c l a u s e I c t r i x 1 1 c t r i z 1 1 c t r i K |
This command kills all characters forward from point to the character following the first
punctuation mark it encounters.

▶ f o r w a r d _ k i I l _ s e n t e n c e | E s c l _ _ G
This command kills all text from point up to and including the first sentence delimiter (. ? or !) it
encounters, or to the end of a file if no delimiter is encountered.

▶ f o r w a r d _ p a r a | c t r i x 1 [J J
This command moves the cursor forward one paragraph to the first column of the next blank line
it encounters. If the cursor is already on a blank line, I ctrix | [71 moves it to the next blank line.

▶ f o r w a r d _ p l a c e _ h o I d e r I c t r i x I [7 1
This is a speed-type command that moves the cursor forward to the next placeholder in your text.
The cursor is positioned on the first character in the placeholder. (See Chapter 5, Speed-type, for
more information about this command.)

▶ forward_search_again
This command searches forward again for the last string that you specified when you performed a
forward search. You can accomplish the same thing using I ctris | and pressing I Return | without
entering another string, or by typing I ctri"c~l (reexecute) after a search.

3-14

Dictionary of EMACS Commands

▶ f o r w a r d _ s e a r c h _ c o m m a n d I E s c l [f]
This command is the same as As_forward_search_command.

▶ f o r w a r d _ s e n t e n c e I E s c [[e]
This command moves the cursor forward and places it on the character following the first
sentence delimiter (. ? or !) it encounters.

▶ f o r w a r d _ w o r d | E s c | Q j]
This command moves the cursor forward to the first word delimiter (space or punctuation mark) it
encounters.

▶ fundamental
This command returns you to fundamental mode from any other mode.

• It reestablishes the fundamental mode keybindings for the I Esc| and I ctri | keys. The
command does not destroy any macros currently defined, but it breaks any bindings
between those macros and the I Esc| and I ctri | key keypaths.

• It removes the current bindings from all function keys on the terminal, except for keys
that send characters identical to fundamental mode keybindings. For example, the
PT45 I send | key emits I ctri w |. After the fundamental coinmand, this key is bound to
the kill_region macro.

▶ get_bufname
This command inserts the name of your current buffer at point

▶ g e t _ f i l e n a m e I c t r i x 1 1 c t r i z 1 1 c t r i F |
This command inserts the pathname of your current file at point,

▶ get_tab
This command retrieves stored tab stops from a file and puts them into effect. (See the save_tab
definition in this chapter for information on saving tab stops.) When you issue this command,
EMACS asks you for the filename under which the tab stops are stored. As soon as you specify a
filename, EMACS switches you to a buffer containing that file and asks you for the name of the
function you are using to store the tabs. (The function names are contained in the file being
displayed on the screen.)

3-15

EMACS Reference Guide

After you have supplied a function name, EMACS evaluates that function and sets the tab stops
you have specified. If you specify a file or function that EMACS cannot find, a File not
found message appears in the minibuffer and the tabs you requested are not set.

▶ global_tabs
This command activates global (default) tabs and inserts a message into the minibuffer explaining
that global tabs are now in effect.

▶ g o t o j i n e | E s c | [g]
This command moves the cursor to the beginning of a specified line in your buffer. For example,
if you type I Esc| |~3~| I esc| [g], the cursor moves to the first character on line 3 in your current file.
If you do not specify a line number, I esc| [g] moves the cursor to the beginning of line 1 (the top
of the buffer).

▶ hcol
This command displays the current setting of the leftmost column of your text display. You can
give this command a numeric argument to change the current setting. To set column 50 as the
first column, for example, you would type the following:

(___!_____] U] __] [___] [x] hcol

In this case, EMACS shifts the display left so that column 50 is positioned at the left edge of the
screen and columns 50 through 130 are displayed.
As soon as text is shifted, this message appears:

hcol is n

where n is the new leftmost column number.
When you want to view columns 1 through 80 again, you can reissue this command or you can
issue the reset command.
If you move point to undisplayed text on either side of the screen, EMACS displays on the status
line the number of the column following point, while the cursor remains at the edge of the screen.

▶ h e l p _ o n _ t a p I c t r i _ |
This command invokes the online EMACS help facility. Chapter 4, Online Help Facility, contains
detailed information about online help command options.

3-16

Dictionary of EMACS Commands

▶ h o r i z j e f t I c t n x | | T 1
This command shifts the current window left 40 columns and prints a message in the minibuffer
telling you which column is currently the leftmost column. Any text to the left of this column is
not visible on your screen. If you issue this command when the leftmost column is column 1,
EMACS displays the prompt

hcol is 1

▶ h o r i z _ r i g h t I c t n x | [7 1
This coinmand shifts the current window right 40 columns and prints a message in the minibuffer
telling which column is currently the leftmost column. If you issue this command when the
leftmost column is column 1, after it executes the command, EMACS displays the prompt

hcol is 41

▶ hscroll
This coinmand tells EMACS to make the column containing point the leftmost column.

▶ ignore_prefix I ctnx 11 ctriG | or I ctrix [| ctnz 11 one |
pr |~Esc1 | Ctrl G |

This command aborts a partially typed command. The command is bound to several keypaths so
that you can abort commands that are prefixed by different characters.

▶ i n d e n t _ r e l a t i v e 1 E s c | [J J
This command indents the current line to the same column as the preceding line and positions the
cursor on that column.

▶ i n d e n t j t o j f i l l j p r e f i x I E s c 1 1 c t r i i |
This command indents the current line to the left column specified by the setjeftjmargin
command. If you do not specify a column number, this command starts the line at column 1.

▶ i n s e r t _ b u f I c t r i x 1 1 c t n z | [T J
This command inserts a copy of the contents of the specified buffer at the current cursor position,
subject to the following limitations:

• No more than 32K-1 (32,767) characters may be contained in any 100 contiguous
lines of text (that is, the average line length in a 100-line area may not exceed 327
characters).

3-17

EMACS Reference Guide

• The inserted buffer cannot contain more than 3,276,800 lines.
• The command prompts you for a buffer name.

▶ i n s e r t _ f i l e I c t r i x | (T J
This command inserts a copy of the file you specify in the current buffer at the current cursor
position. It prompts you for a filename.

▶ i n s e r t _ t a b I c t r i x 1 1 c t r i i |
This command inserts spaces from the current cursor position to the next tab stop and moves the
cursor to the next tab position.

▶ insert_version
This command inserts the current EMACS version number in your buffer at the current cursor
position. An example is shown below.

EMACS version 20.0.12e

▶ k i l l j i n e | c t r i K |
This command kills all text from the current cursor position to the line separator. If the cursor is
on the line separator, I ctriK | kills the line separator and joins the following line with the current
one. If the cursor is on a blank line containing only the line separator, I ctriK | kills the line
separator, deleting the blank line. Therefore, if you want to kill a line itself, as well as the text on
it, you must type I ctriK |twice. EMACS places the deleted text on the kill ring.

▶ k i l l _ r e g i o n I c t r i w l
This command kills the specified region and places it on the kill ring, moving point back to the
mark. (See The Mark and the Region section in Chapter 2 for more information about this
command.) Before you issue this command, it is a good idea to check the boundaries of your
region, using I ctrix | | ctrix | (exchange_mark). For information about specifying a region and
storing entries on the kill ring, see the mark command.

▶ k i l l _ r e s t _ o f _ b u f f e r Q _ _ _ J I c t r i d |
This command kills all text from the current cursor position to the end of the current buffer and
places the killed text on the kill ring. You can recall the text from the kill ring with I ctriY |.

3-18

Dictionary of EMACS Commands

▶ l e a v e _ o n e _ w h i t e | E s c | | s r a c e |
This command deletes extra spaces preceding the current cursor position, leaving a single blank.
If the cursor was on a single space, it moves forward to the next character.

▶ l i s t _ b u f f e i * S | C t r I X 1 1 C t r i B I
This command displays at the top of your screen a list of all the buffers used during the current
editing session in order of creation. This list overwrites the screen display, but it does not affect
the text in the buffer. The list disappears as soon as you issue your next command.
1 ctrix 11 ctriB | also gives you the following type of information:

r e f . 1 7 * 3
r e f * 4 5 < D S K N A M > R E F
m i s c 1 1 5 < D S K N A M > B B > I N D O O $ S . 9 0 4 3
. s t a r t _ u p 6 < D S K N A M > E M A C S > E M A C S _ S TA R T U P

The first column in this sample list contains the names of buffers used during the current editing
session. Buffer names preceded by a period signify internal buffers used only by EMACS. An
asterisk (*) appearing after a buffer name indicates that the buffer contains unsaved text.
The second column indicates the number of lines in the file. The third column lists the
corresponding pathnames of the buffers contained in column 1. If a buffer does not have a
corresponding pathname, it means that the buffer does not have an associated disk file. A buffer
that does not contain text is not included in the display list.

▶ Ioad_compiIed
This command loads a fasload file that has been saved with the dump_file command.

▶ load_pl_source
This command compiles and loads a PEEL source file. When you type [____] [x] load_pl_source,
EMACS prompts you for a pathname. EMACS finds the specified file, compiles it, and then lets
you know when it is done. You are then free to execute the commands that are defined in the file.

▶ local_tabs
This command activates tabs that are local to the current buffer. A message appears in the
minibuffer saying that local tabs are now in effect

▶ l o w e r c a s e _ r e g i o n | c t r i x 1 1 c t r i L |
This command converts the current region to lowercase. Check the region boundaries before
using this command, as corrections can only be made by hand or by rereading the file.

3-19

EMACS Reference Guide

▶ k) w e r c a s e _ w o r d I E s c | \ T \
This command converts the current word to lowercase and moves the cursor to the space
following the word. If you give this command a negative argument, the word or words preceding
point will change to lowercase, but the cursor will not move. This is particularly useful when you
realize a word is in the wrong case immediately after you have typed it. You can type I Esc | [JJ
I Esc| [T| to change the word and then go on typing without having to move the cursor back and
forth.

▶ m a r k | c t r i @ |
This command sets a mark at point. The mark defines the beginning of a region. The region ends
at the cursor position, after the cursor has moved away from the mark. (See The Mark and the
Region section in Chapter 2.)
The mark is also useful for remembering a position in your text. EMACS "remembers" ten
previous locations of the mark and stores them on a ring. I ctriu 11 ctri@ | returns the cursor to
previous locations of the mark. If you move to all ten previous locations of the mark, EMACS
will bring you back to the most recent one.

▶ m a r k _ b o t t o m | c t r i x 1 1 c t r i z | f > 1
This command places the mark at the bottom of the current buffer without moving the cursor.

▶ m a r k _ e n d _ o f _ w o r d [e s c ~ | \ @]
This command sets a mark at the end of the current word without moving the cursor. If the cursor
is on a space or punctuation mark, the word following the cursor is the current word. If the cursor
is on a character that is already part of a word, that word is the current word.

▶ m a r k j p a r a [E s c l [h]
This command sets a mark at the beginning of the paragraph surrounding point and moves point
and the cursor to the end of the paragraph. If the cursor is between paragraphs, I esc| [h] operates
on the paragraph preceding the cursor.

▶ m a r k _ t o p I c t r i x 1 1 c t r i z 1 [7]
This command sets a mark at the top of the current buffer without moving the cursor.

▶ m a r k j w h o l e I c t r i x 1 Q T J
This command defines the entire buffer as a region by setting a mark at the end of the buffer and
moving point and the cursor to the beginning of the buffer.

3-20

Dictionary of EMACS Commands

▶ m e r g e j i n e s I E s c l P H
This command combines the following line with the current one to form a single line in which the
text of the joined parts is separated by a single space. Unlike 1 ctrip | or [______], which merge two
lines only when the cursor is at the end of a line, I Esc | PH takes effect regardless of the position
of the cursor. The position of the cursor does not change.

▶ m o d _ o n e _ w i n d o w I c t r i x | [J J
This command displays a single window on your screen. You would normally use this command
after you have displayed multiple windows. The window containing the cursor becomes the single
window.

▶ m o d _ s e l e c t _ b u f | c t n x | [¥)
This command lets you change buffers. It finds or creates the buffer you specify in answer to the
prompt, and moves you to it. If you press I Return | after typing I ctrix 1 pi], EMACS returns you to
the previous buffer.
This command is identical to select_buf.

▶ m o d _ s p l i t _ w i n d o w | c t r i x | [T |
This command divides the current window horizontally into two windows. The top half is
window 1 and the bottom half is window 2. Each window displays the contents of a different
buffer.
When you issue this command, a line of dashes appears across the middle of your screen to form
the two windows. A portion of the text that previously occupied the entire screen remains in
window 1. The cursor moves to window 2. The mode line changes to reflect the buffer in window
2, since it contains the cursor.
The first time you type I ctrix | fl], window 2 is automatically given an empty buffer called
alternate. You can either type text directly into this buffer or use one of the file commands to
insert a file into it. If you return to one window and then type I ctrix | [J] again during the same
editing session, the most recent buffer contained in the other window is automatically displayed
in window 2.
Because 1 ctrix | |T| splits the current window into two windows, you can use it to create windows
within windows. For example, typing I ctrix | \T\ with the cursor in window 2 divides window 2
in half to form a total of three windows on your screen.
If you give 1 ctrix | \T\ an argument, it makes window 1 only as large as you specify. For
example, if you type I Esc | [T| | ctrix | pf], EMACS divides the screen so that window 1 displays
only four lines and window 2 displays the remaining lines on the screen.
This feature is very useful when you are working a terminal with a very slow baud rate. If you are
working with text in a window made up of only a few lines, you do not have to wait for EMACS
to update the entire display after each command.

3-21

EMACS Reference Guide

▶ m o d _ s p H t _ w i n d o w _ s t a y I C l r l x I H
This command is almost identical to I ctnx | [Tl (mod_split_window), but it places the cursor in
window 1 instead of window 2. The current buffer is not changed, and you are free to continue
editing it.

▶ m o d _ w r i t e _ f i l e I c ^ x l [c t r T w l
This command writes the text in your buffer to the file listed in the pathname that you specify. If
you specify a file that does not exist, EMACS creates it for you. If you specify a file that already
contains text, EMACS asks you if you want to overwrite the existing information.

▶ m o v e j b o t t o m I E s c | [T j
This command moves the cursor to the end of the current buffer so that it rests on the last
character of the last line. Because PRIMOS inserts a blank line at the end of every file it saves,
the last line of the file is blank if the file has been saved. Therefore, the position of the final cr in
the file determines where this command places the cursor.

▶ m o v e _ t o p 1 E s c | [T]
This command moves the cursor to the beginning of the current buffer and places it on the first
character of the first line.

▶ m u l t i p l i e r I c t r i u |
This command can be used immediately after a numeric argument to multiply the numeric
argument by four. The command can only be used when bound to a key sequence normally
I ctriu |. An example is shown below.

1 Esc| [il | ctriu | PH

This command inserts 24 x's into your buffer. (See the Giving Numeric Arguments to EMACS
Commands section in Chapter 1 for more information about I ctriu |.)

▶ newjeatures
This command displays the buffer (.new_features) that contains the file
EMACS*>NEW_FEATURES_INFO. This file gives information about the current release of
EMACS. Type ? to see a display of options for moving around in this file or returning to your
current buffer.

3-22

Dictionary of EMACS Commands

▶ n e x t j x i f [] _ _ _] [_ _]
This command cycles through all buffers in order of creation following the current one. When
you type I esc| [n], EMACS switches you to the buffer you created immediately after the current
one. If the current buffer is the last one you created, 1 esc| QfJ switches you to "main," the first
buffer in the cycle.
When EMACS switches you to a new buffer, you are free to edit that buffer as usual. If you type
I esc | [n1 again, EMACS switches you to the next buffer in the cycle. If you type I Esc| [n] enough
times, you will eventually get back to your original buffer.
The EMACS Command Conventions section in Chapter 1 explains why I Escl [n] cannot be used
in uppercase letters on the PT200 terminal.

▶ n e x t _ l i n e _ c o m m a n d [_ c _ _ n J
This command moves the cursor down one line so that it maintains its current column position. If
there are no characters (spaces, text, or line separators) in the current column position on the next
line, the cursor is positioned following the last used character position in the line. If the cursor is
on the last line of your buffer that contains text, I ctriN | creates a new line containing no
characters and positions the cursor in column 1 of the new line.

CtriV▶ nextjpage
This command moves the screen display forward one page. The last three lines at the bottom of
your screen move to the top of the new screen display. The cursor is placed at the beginning of
the line in the middle of the display, except at the beginning or end of the file.
You may specify a number of pages to move forward by giving a numeric argument to this
command.

▶ one_window
This command is analogous to the mod_one_window command described above.

▶ o p e n j i n e 1 c t r i o |
This command is almost identical to cr, described above, but it maintains the current position of
the cursor.
If you type I ctrio | at the end of a line, EMACS inserts a carriage return after the cursor and the
cursor remains where it is. If you type I ctrio | in the middle of a line of text, EMACS inserts a cr
after the cursor, moves the text following the cursor to new line, and leaves the cursor in its
present position. If you type 1 ctrio | at the beginning of a line, EMACS inserts a cr after the
cursor, moves the entire line of text down to a new line, and leaves the cursor at its present
position.

3-23

EMACS Reference Guide

▶ o t h e r _ w i n d o w I c t r i x | [o]
This command moves the cursor to the other window. If there are more than two windows,
1 ctrix | [ol moves the cursor back and forth between the last two windows you created.

▶ overlayer
This function takes effect only within overlay mode. It overlays the existing character with a new
one. It is similar to the selfjnsert function in fundamental mode and cannot be executed as an
extended command.

▶ overlay_off
This command turns off overlay mode so that newly entered characters are inserted at point.

▶ over!ay_on
This command puts overlay mode in effect until you turn it off. In overlay mode, EMACS deletes
any existing character on the line at point before adding a new one at the same position.

▶ overlay_rubout
In overlay mode, this command replaces the character to the left of the cursor with a space and
moves the cursor back to the space.

▶ p i

This command compiles the Prime EMACS Extension Language source code in your current
buffer so that you can execute it during the current EMACS session. You can name another
buffer as an argument. If the buffer contains more than 32,000 characters, the command produces
an error message.

▶ p L m i n i b u f f e r [_ _ _] [_ _ _]
This command allows you to execute a PEEL statement. EMACS displays the following prompt
in the minibuffer:

PL:

Respond to the prompt with a PEEL statement for EMACS to execute.

3-24

Dictionary of EMACS Commands

▶ popmark
This coinmand "pops" the current mark off the mark ring. It does not change the cursor.

▶ p r e p e n d _ t o _ b u f I c t n x | p H
This command inserts the current region at the beginning of the buffer you specify. It prompts
you for a buffer name. If you specify a nonexistent buffer, EMACS creates a new buffer for you.
When the region is prepended, EMACS displays the following message:

Region prepended

If you do not specify a numeric argument greater than 1, the current region is deleted and moved
to the new buffer. If you specify a numeric argument greater than 1, the region is copied and
moved.

▶ p r e p e n d _ t o _ f i l e | _ c _ _ _ G [_ _ _ _ !] Q _]
This command inserts the current region at the beginning of the specified file. The coinmand
prompts you for a filename. If you specify a nonexistent file, EMACS creates a new file for you.
When the region has been prepended, EMACS displays the following message in the minibuffer:

Region prepended

If you do not specify a numeric argument greater than 1, the region is deleted and moved to the
file. If you specify a numeric argument greater than 1, the region is copied and moved.

▶ p r e v j x i f _ _ _ _] [_]
This command cycles through all of the buffers in reverse order of creation, from the current one.

▶ p r e v _ l i n e _ c o m m a n d I c t r i z |
I ctriz | moves the cursor up one line so that it maintains its current column position. If there are
no characters (spaces, text, or line separators) in the current column position on the previous line,
the cursor is positioned following the last used character position in the line.
If you type I ctriz Ion the first line of a file, EMACS ignores the command.

3-25

EMACS Reference Guide

▶ primos_command CtrIX CtriE

ctnxl [ctriEl allows you to execute a PRIMOS command without leaving EMACS. When you
issue this command, EMACS displays the following prompt in the minibuffer:

Primos command:

You can respond to this prompt in one of three ways:

• Type one exclamation point (!) before the command.
• Type two exclamation points (!!) before the command. This is the least complex

method.
• Do not precede the command with any characters.

Each method is discussed below.
If you precede the PRIMOS command with one exclamation point (!), EMACS executes the
command and switches you to a new buffer called file_output to display the output. You can
modify and save the text in this output buffer just like any ordinary EMACS buffer. To get back
to your original buffer, use any of the buffer or file commands.
If you precede the PRIMOS command with two exclamation points (!!), EMACS executes the
command, but it does not switch you to a different buffer. Instead, EMACS generates a new
screen, runs the command at PRIMOS level, and displays the output on that screen. This output
disappears when you type any single character, or a single command character such as I ctri l | or
I ctriG |; you cannot save it. Note that if you type a single character, EMACS inserts that character
into your current file.
You may use one of your PRIMOS abbreviations in response to the Primos command: prompt
by typing either one or two exclamation points, followed by ab -ee and your abbreviation. The
following example shows how to use an abbreviation d (for the PRIMOS delete command) to
delete a file from your current directory.

Primos command: ! lab -ee d pathname

If you issue a PRIMOS command without any characters preceding it, EMACS executes the
command as a phantom process. When the command is executed, EMACS switches you to the
file_output buffer and displays the output of this command.
The names of these three options to the primos_command command are shown in Table 3-2.

Table 3-2
Options to primos_command

Option Form Description
primos_internal_como Output is displayed in file_output buffer.
primos_internaI_screen Output is displayed on new screen.
primos_external no prefix Command is executed as phantom.

3-26

Dictionary of EMACS Commands

Notes
At Rev. 19.4 of PRIMOS, any PRIMOS command except EMACS may
be executed via primos_internal_como or primos_internal_screen.
External commands no longer overwrite EMACS.
It is not possible to execute a .COMI file from within EMACS, using
either primos_internaI_como or primos_internal_screen. An
attempt to do so will result in the following message:

Use CPL (instead of COMINPUT) to execute a file
containing PRIMOS commands!

A .COMI file can be executed, however, using primos_external.

▶ primos_external
The primos_external command or function is the option to the I ctrix | 1 ctriE | command that
executes a PRIMOS command by means of a separate phantom job. It waits for the execution to
complete and then displays the results in the file_output buffer.
After the phantom job has terminated, EMACS creates or overwrites the text buffer named
file_output, loading into it the output file created by the phantom job. You may continue editing your
original file by switching back to the buffer into which that file was loaded.

▶ primos_internal_como
The primos_internal_como command or function is the option to the I ctrix 11 ctriE | command
that runs a PRIMOS command with como output. If the coinmand is not specified, EMACS
prompts you with Internal command:. The PRIMOS coinmand must not require any
interactive keyboard input from the user.
After execution of the command is completed, EMACS creates or overwrites the text buffer
named file_output, loading into it the command output file. Screen displays normally generated
by the PRIMOS command are not shown on the screen, but are captured in the output file.

▶ primos_internal_screen function
The primos_internal_screen function is the option to the I ctrix | | ctriE | command (!!) that
executes an interactive PRIMOS command. The following prompt appears in the minibuffer:

Internal command:

When you enter the PRIMOS command, EMACS clears your current screen and displays the
command output on your screen. To return to your original screen, type any single-character
command such as I ctriG |, or any single character.

3-27

EMACS Reference Guide

▶ pushmark
This command pushes a mark onto the ring of marks. The ring contains ten entries.

▶ q u e r y j r e p l a c e I E s c | \ %]

This command searches for a character string with the option of replacing it with another.
EMACS prompts you for each instance. EMACS finds the first occurrence of the first string and
places the cursor on the character following it. It then waits for you to respond to the following
prompt:

SPACE - Replace+Continue CR - Skip+Continue "." - Replace+Stop AG = Abort

The responses work as follows:

Response Descr ip t ion
sfftCEl Replaces current occurrence of the first string and then moves to next

one.
I Return | Skips to next occurrence of the first string without replacing the

current one.

r~l Replaces current occurrence of string and exits without doing any more
replacement.

I ctri g | Stops searching and does no more replacements.

EMACS ignores any other character you type until the search is stopped. When the search is
stopped, the cursor moves back to its original position.
The query_replace command works only within the current region, if one is defined. If
query_replace fails to find an instance of your first string where you are sure one exists, check
the boundaries of your region.

^ q u i t r c l r i T l f c l r T c ~ l

This command takes you out of the EMACS editor and back to the process from which you
invoked EMACS, normally PRIMOS command level. If any buffers contain text that has not
been saved, EMACS prints a list of these buffers at the top of your screen and asks:

Above list of modified buffers(s) not saved to files(s) .
Quit anyway?:

If you respond by typing Yor YES, you leave EMACS and your changes are lost. If you type N
or NO or I ctriG |, EMACS aborts the request to exit.

3-28

Dictionary of EMACS Commands

▶ q u o t e _ c o m m a n d I c t r i x | [o l
This command is the same as the Aq_quote_command command.

▶ r e a d _ f i l e | c t r i x | [c r t R l
This command copies an existing PRIMOS disk file into your current EMACS buffer and
displays it on your screen. It prompts you for a filename.
If you specify a file that does not exist, EMACS responds with an error message. If your buffer
already contains text, EMACS informs you that the buffer is not empty and asks if you want to
delete it. If you give a positive response, EMACS deletes the old text and inserts the new file in
its place. If you give a negative response, EMACS ignores your request to read in a file.
When you read a file into a buffer using I ctrix 11 ctri r L the name of the buffer does not change.

Note
If you want to work with a file from another directory requiring a
password, you must precede the pathname you specify for I ctrix |
I ctri r | with a tilde (~). For example, if you want to find a file called
SECRET in the directory <DSKNAM>CLASSEFIED, requiring the
password FISH, you would type the following string in response to the
Read file prompt:

~<DSKNAM>CLASSIFIED FISH>SECRET

Note that the tilde (~) character is placed before the entire pathname,
and the password follows immediately after the name of the directory
(separated by a space) that requires it

▶ r e e x e c u t e I c t r i c |
This command reexecutes the last command you issued. It is particularly useful when you want to
reissue a command that requires many keystrokes. If the last command you issued required a
response to a prompt, EMACS remembers your response. If you issue 1 ctric | while you are
entering text, I ctric | reenters the last character you typed.

▶ r e f r e s h I c t r i L 1
This coinmand refreshes the text on your screen by removing all text that is not part of the text
you are editing, such as messages from the system or information resulting from certain EMACS
commands. This command also centers point in the middle of the screen.
I ctri l | with a positive numeric argument moves the text so that the cursor is on the line specified
by the argument. For example, an argument of 3 moves the text so that the cursor is on line 3,
counting down from the top of the screen.

3-29

EMACS Reference Guide

ctriL | with an argument of 0 moves the text so that the cursor is on the top line of the screen.

1 ctriL [with a negative numeric argument moves the text so that the cursor is on the line specified
by the argument, counting up from the bottom of the screen. For example, giving this command
an argument of -2 moves the text so that the cursor is on the second line from the bottom of the
screen.

▶ reject
This command prints the Invalid command: prompt in the minibuffer. See the EMACS
Extension Writing Guide for more information.

▶ r e p a i n t | c t n x 1 Q F]
This command moves your cursor to the first line on your screen. You can move the cursor to any
line that you specify by giving a positive numeric argument. If you use a negative or 0 argument,
EMACS assumes that you want the cursor moved to line 1.

▶ replace
This command replaces all occurrences of one character string with another. EMACS prompts
you in the minibuffer for both character strings. If you create a keyboard macro using the Global
Replace key, EMACS is inconsistent in retaining the search and replace strings within the macro.
(See the section on Macros in Chapter 2.)
The replace command works only within the current region if one is defined. If I Esc | [x] replace
fails to find an instance of your first string where you are sure one exists, check the boundaries of
your region.

▶ reset
This command refreshes the screen and makes column 1 the leftmost column. It is a general reset
command in that it turns off any modes or special features you have in effect such as multiple
windows.

▶ reverse_search_again
This command searches backward again for the last string that you specified when you performed
a reverse search. The position of the cursor and the minibuffer prompts are the same as for a
reverse search.

3-30

Dictionary of EMACS Commands

▶ r e v e r s e _ s e a r c h _ c o m m a n d I c t r i R | o r I e s c | [r]
This command searches backward from the cursor for the character string you specify. When the
search is successful, the cursor moves to the first character in the string. Therefore, if you search
for the string bed and EMACS finds it in the larger string abcde, EMACS places the cursor on
the b. If the search is unsuccessful, the Not found: prompt appears in the minibuffer.

▶ r u b o u t _ c h a r I c t r m |
I ctri h | deletes the character before point, causing the remaining text on the line to shift left. If
you type I ctriH | at the teginning of a line, it deletes the line separator character occurring before
it and causes the current line and the previous one to join at the end of the previous line.
Most terrninals have special keys that perform the same function as I ctrm |. These are:

Backspace | | Delete

▶ r u b o u t _ w o r d [_ * D I c t r i H
This command deletes the previous word and places it on the kill ring. If you press I esc| I Backspace
in the middle of a word, only those characters preceding the cursor are deleted.
You can usually substitute I Delete | or IruboutI for 1 Backspace 1 in this command. To check this, type
I ctri_ | [cl (help_on_tap) followed by the keystrokes. This command tells you if those
keystrokes invoke the rubout_word command.

▶ save_all_files
This command saves all modified buffers that have associated disk files. It returns a message
telling how many files were saved.

▶ save_ f i l e | c t r i x 11 c t r i s~ | o r I c t r i x | [§]
This command saves the text from your current buffer and writes it to the filename specified on
the status line. You can issue this command at any time during an editing session as long as a
filename is listed on the status line. If you try to use I ctrix | I ctris | in a buffer that has no
corresponding filename, EMACS responds with the error message:

No default file name for this buffer

To save text from a buffer that has no filename, use the I ctrix | | ctriw | (mod_write_file)
command.

3-31

EMACS Reference Guide

▶ save_tab
This command saves the current tab stops in a file so you can retrieve them at any time. The tab
stops are actually stored in an EMACS function, which is in turn stored in a file. Therefore, you
can save as many sets of tab stops as you like in one file as long as they are stored under different
function names.
When you type I Esc | [x] save_tab, EMACS prompts you for a filename. If you specify an
existing file, EMACS switches you to a buffer containing that file. If you specify a new file,
EMACS creates it for you and switches you to an empty buffer. You are then prompted for a
name under which to save the tabs. This is the name of the functioa When you supply a name,
the source code for the function is inserted into the file, you are returned to your original text, and
this message appears in the minibuffer:

Tabs are now saved

▶ s c r o l l _ o t h e r _ b a c k w a r d 1 c t r i x | [7]
This command moves the text in the other window backward one screen without moving the
cursor from the current window. The other window is the next-last created window, if you are
displaying more than two.
If you give this command a positive argument, it moves the text backward the specified number
of lines. If you give this command a single minus sign (-) for an argument, it moves the text
forward one screen. If you give this command a negative argument, it moves the text forward the
specified number of lines.

▶ s c r o l l _ o t h e r _ f o r w a r d | E s c l 1 c t r i v l
This command moves the text in the other window forward one screen without moving the cursor
out of the current window. The other window is the next-last created window, if you are
displaying more than two.
If you give this command a positive argument, it moves the text forward the specified number of
lines. If you give this command a single minus sign (-) for an argument, it moves the text
backward one screen. If you give this command a negative argument, it moves the text backward
the specified number of lines.

▶ s e l e c t _ a n y _ w i n d o w 1 c t r i x | [T |
This command cycles the cursor through all windows in the reverse order of their creation.

▶ select_buf
This command is the same as mod_select_buf.

3-32

~ >

Dictionary of EMACS Commands

▶ selfjnsert
This function inserts a character into your text buffer. It is normally bound to all printing keys,
that is, keys for printing characters not preceded by an 1 Escl or a I ctri | character. Therefore, to
insert text in a file, all you have to do is type the text. As you insert characters, point and any
characters following it move to the right on the line. For example, if point is located between the
characters o and a in the word infoation, typing rm produces information, with the
cursor on the a.
This function cannot be executed as an extended command. See the Functions section in Chapter
1 for an example of executing selfjnsert as a PI function.

▶ setjiscroll
This command sets the value of hcol, the first column of text on your screen. It prompts you for
the column number. After you enter this number, EMACS shifts your screen display left until that
column is displayed at the left edge of the screen. Any text to the left of this column is shifted off
the screen. Text to the right of that column not previously visible shifts into view. For example, if
you specify the left column to be 50, the text in columns 50 through 130 will be displayed on the
screen. You are free to edit the shifted text with any of the normal EMACS commands.
As soon as text is shifted, this message is displayed in the minibuffer:

hcol is n

where n is the leftmost column number.
When you want to view columns 1 through 80 again, you can reissue this command and specify
column 1 when prompted for a number, or you can issue the reset command.
If you move point to undisplayed text on either side of the screen, EMACS displays on the status
line the number of the column following point, while the cursor remains at the edge of the screen.

▶ setjkey
This command is similar to I Esc| [x] set_permanent_key, except that the keybindings you create
are effective in the current buffer only. When you switch to a new buffer, the old keybindings
remain in effect.

▶ setjeftjmargin
This command sets the left fill margin to the column you specify. EMACS prompts you for the
column number.

▶ setjnode
This command turns off any other mode in your current buffer and turns on the mode you
specify. EMACS prompts you for a mode name. The new mode name appears on the status line.

3-33

EMACS Reference Guide

▶ set_mode_key
This command binds a keypath to a function in the specified mode. EMACS prompts you for a
mode name, then for a keypath, and finally for the name of a function. This command is similar
to the I Esc| [xl set_permanent_key command except that the keybindings are effective only in
buffers where the mode you specified is in effect.

▶ set_permanent_key
This command binds a function to the key you specify for the duration of the current editing
session. It prompts you for a keypath and a command name. The keypath refers to the keys to
which you want the function bound. The command name is the name of the function you want to
bind to a key.

N o t e ^
You cannot use I ctri m | or I ctrim | to bind an EMACS command.
PRIMOS changes the terminal's carriage return character (I ctri m |) to
I ctri j |, and completely ignores the terminal's line-feed character
(1 ctrij |). Thus, PRIMOS prevents a 1 ctriM | from ever reaching
EMACS.

To specify the keypath, type printing characters that correspond to the keys you want to use. The
keypath may not exceed 10 characters. The conventions for typing keypaths are as follows: -^

A means I ctri

A[means I Esc

Note
When you bind a function to an |Esc| sequence, you must bind
uppercase and lowercase letters separately. For instance, if you want to
bind a function to I Esc | [q] and to |esc| [q], you must issue the |Esc| [x]
set_permanent_key command twice: once to set the keypath to A[Q
and once to set it to A[q.

The new bindings remain in effect for the duration of the current editing session. If you want to
use these bindings every time you use EMACS, you must incorporate them into an EMACS
library. The EMACS Extension Writing Guide and Chapter 6 of this book explain how to do this.

▶ s e t _ r i g h t _ m a r g i n 1 C t r l x I B
This command sets the right fill margin to the column you specify. EMACS prompts you for a
column number.

3-34

Dictionary of EMACS Commands

▶ set_tab
This command is an alternate for the settab command.

▶ set_tabs
This command is an alternate for the settab command.

▶ setmark
This command is identical to the mark command.

▶ settab
This command allows you to set tab stops in any columns you like. When you issue this
command, EMACS switches you to another buffer containing an 80-character ruler at the top of
the screen. The following prompts appear in the minibuffer:

Is there a default interval:

If you type

yes I Return |

EMACS asks you

How far apart:.

You can then type a number to specify a new default interval. When you do, point moves to
column 1 on the ruler at the top of the screen and a T appears in each column that contains a tab
stop. For example, if you specified a default interval of 8, the ruler would look like this:

1 2 3 4 5 6 7 8
5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0

H " ! * p i p f p f p f p r p r p r p f p

When you have set a default interval, you are free to modify it with the tab coinmands described
in Table 3-3.
If you do not specify a default interval, the cursor moves immediately to column 1 on the ruler
and a T appears in column 80.

3-35

EMACS Reference Guide

When the cursor moves to the top of your screen, the following prompt appears in the minibuffer:

Type a space, t, b, h, r, ?, or q

These options are summarized in Table 3-3.

Table 3-3
Settab Prompts

Prompt Explanation
SPACE
t
f

b
h

r

q

Moves cursor forward one character on line under ruler. Deletes a T.
Sets a tab stop at specified column.

Moves the cursor forward one character on line under ruler. Does not delete a T.
Moves cursor backward one character on line under ruler. Does not delete a T.
Shifts ruler left 60 spaces. Allows you to set tab stops in columns you nor
mally do not see on the screen.
Resets ruler to original position.

Signals EMACS that you want to quit setting tab stops and go back to your
text.

Describes the list of tab command options.

▶ settabs_from_tabIe
This command sets tab stops at the first column of every word on the line where the cursor is. (A
word is a sequence of consecutive characters delimited by a space or punctuation mark.)

For example, suppose the cursor is somewhere on a line containing the text shown below:

C O L U M N _ A B 1 2 3 C O L U M N D

EMACS sets tab stops at the following character positions:

• On the C in the word COLUMN_A
• On the B

• On the 1 in the character sequence 123
• On the C in the word COLUMN

• On the D

Note that COLUMN_A is considered one word and COLUMN D is considered two words.

You may abbreviate this command to setft.

3-36

Dictionary of EMACS Commands

▶ set_user_type
This command sets the user type for the file hook procedure.

▶ sort_dt
This command inserts the date into your buffer in the following format:

87/12/17

▶ spd_add
This command adds an abbreviation to the current speed-type environment. For detailed
information about how to use speed-type, see Chapter 5.

▶ spd_add_modal
This command adds an speed-type abbreviation that is defined for a specific mode. For detailed
information about how to use speed-type, see Chapter 5.

▶ s p d _ a d d _ r e g i o n I c t r i x | [7]
This command defines a region in your text as the expansion of a speed-type abbreviation. For
detailed information about how to use speed-type, see Chapter 5.

▶ spd_compile
This command compiles the speed-type source file in the current buffer. For detailed information
about how to use speed-type, see Chapter 5.

▶ spd_delete
This command deletes an existing abbreviation from the current speed-type environment. For
detailed information about how to use speed-type, see Chapter 5.

▶ spdjist
This command prints information about a specific speed-type abbreviation at the top of your
screen. For detailed information about how to use speed-type, see Chapter 5.

▶ spd_list_all
This command gives you information about all the abbreviations currently loaded into the speed-
type environment For detailed information about how to use speed-type, see Chapter 5.

3-37

EMACS Reference Guide

▶ spd_list_file
This command lists the speed-type abbreviations found in the file that you specify. For detailed
information about how to use speed-type, see Chapter 5.

▶ spd_load_file
This command loads an abbreviation file into the speed-type environment. For detailed
information about how to use speed-type, see Chapter 5.

▶ spd_off
This command turns off the speed-type environment. For detailed information about how to use
speed-type, see Chapter 5.

▶ spd_on
This command turns on the speed-type environment. For detailed information about how to use
speed-type, see Chapter 5.

▶ spd_save_file
This command saves all the changes you have made to the current speed-type environment. For
detailed information about how to use speed-type, see Chapter 5.

▶ s p d j j n e x p a n d I c t r i x | [~ H
This command removes the most recent speed-type expansion from the current buffer. For
detailed information about how to use speed-type, see Chapter 5.

▶ s p l i t j i n e I E s c l I c t r i o I
This command breaks a line at the cursor. The characters to the right of the cursor move down
one line to the same column positions on the new line. The cursor does not move.

▶ split_window
This command is the same as mod_split_window.

▶ split_window_stay
This command is the same as the mod_split_window_stay command.

3-38

Dictionary of EMACS Commands

▶ tablist
This command sets tab stops from a list of column numbers that you supply. When you issue this
command, the following prompt appears:

Set tab columns separated by blanks:

Enter the column numbers where you want tab stops, leaving spaces between them. This message
then appears in the minibuffer:

Tabs are set

▶ t a k e _ l e f t _ m a r g i n I c t n x 1 □
This command sets the left fill margin to the column currently containing the cursor. It is
effective only if it is followed by the fill_para command. A minibuffer message displays the
column number of the new left margin.
The untidy command restores text in filled but unjustified format, using column 1 as the left
margin. (Resetting the margin and using the fill_para command does not give the same result,
due to the introduced spaces.)

▶ t a k e _ r i g h t _ m a r g i n I c t n x 1 1 c t n z | [£ \
This command sets the right fill margin to the column currently containing point A minibuffer
message displays the column number of the right margin. This command sets a new right margin
when you are executing the fill_para command.

▶ telljeftjmargin
This command displays in the minibuffer the column number of the current left margin.

▶ tell_modes
This command gives information at the top of the screen about all modes that are currently in
effect. The command is useful when modes are in effect whose names are not on the status line.
You can clear the display with I ctriG |(abort_command).

▶ t e l l _ p o s i t i o n | c t r i x | \ T \
This command displays information in the minibuffer about the current buffer, including the
current line and character position. A sample line of information looks like this:

At line 26 of 240, col 26 char is 254 (,). Window line 13.

At line 26 of 240 means that the cursor is currently on line 26 of a file that is 240 lines long.

3-39

EMACS Reference Guide

Col 2 6 means that the cursor is currently in column 26 on the screen.
Char is 254 refers to the octal code number of the character after point (under the cursor). The
comma in parentheses is the actual character.
Window line 13 means that point is on line 13 of the terminal screen.

▶ tell_right_margin
This command displays in the minibuffer the column number of the current right margin.

▶ t o g g l e _ r e d i s p l a y | c t r i x 1 1 c t r i t |
This command freezes the screen display of an EMACS command until you issue it again. It is
usually used with slow display terminals.
While the screen is frozen, you can issue EMACS commands, and EMACS will execute them. If
you want to check on the execution, you can issue the viewjines command, and EMACS will
display a single screen showing the current activity.
If you issue an invalid command, EMACS displays an error message in the minibuffer and
displays the current state of your screen. Issuing I ctrix | | ctriT | again unfreezes the screen
display.

▶ t r a n s p o s e _ w o r d I E s c | p f]
This command transposes the two words immediately before and after the cursor. If the cursor is
in the middle of a word, I Esc| [Tl transposes that word and the one preceding it The cursor goes
to the first character of the second word.

▶ trim_date
This command inserts the current date into your buffer at the current cursor position in the
following format:

18 Dec 1987

▶ trim_dt
This command inserts the current date into your buffer at the current cursor position in the
following format:

12/18/87

3-40

Dictionary of EMACS Commands

▶ t w i d d l e 1 c t r n |
This command transposes the two characters immediately preceding point. For example, if the
cursor rests on the e in the character string hte, typing I C-it | transposes the h and t to form the
word the. The cursor does not move.

Ctrl I▶ type_tab
This command works like a typewriter Tab key. It moves point forward on a line to the first tab
stop it encounters.
If your terminal has a I tab | key, you can press it instead of typing I Esc| |~x] type_tab.
This command takes both positive and negative arguments. A negative argument causes this
command to act as a backtab.

▶ u n m o d i f y I E s c | f T j
This command tells EMACS to treat the current buffer as if it were unmodified. It clears the
modified flag and allows you to quit EMACS without being warned that you made changes and
did not save them.

▶ untidy
This coinmand reformats a paragraph so that the lines are about the same length. It removes
indentation and justification while filling the paragraph. It uses column 1 for the left margin and
the latest setting for the right margin.

▶ u p p e r c a s e _ r e g i o n I c t r i x 1 1 c t r i u |
This command converts the current region to uppercase. Check the region boundaries before
using this command, as corrections can only be made by hand or by rereading the file.

▶ u p p e r c a s e j w o r d I E s c | [u ~ |
This command converts the current word to uppercase and moves point to the space following the
word.

W view
This command turns on view mode in the current buffer. When view mode is in effect, the
current buffer cannot be modified. You can use the options listed in Table 3-4, as well as your
function keys, to move through the buffer.

3-41

EMACS Reference Guide

Table 3-4
View Mode Options

Option Description
SPACE Moves cursor forward a screen.

B Moves cursor back one screen.
> Moves cursor to start of text.
< Moves cursor to end of text.
R Executes reverse search.
S Executes forward search.

▶ view_file | Ctrl X | [Ctrl V |

This command finds the file that you specify in response to the prompt, reads it into a buffer, and
switches you to that buffer in view mode. You can then use view mode options to page through
the text. (See the view command for a list of view mode options.) The minibuffer contains
instructions for turning view mode off.

▶ view_kill_ring CtrIX CtrIZ

This command switches you from your current buffer to the buffer containing the kill ring. This
buffer displays one kill ring entry on the screen. If the kill ring is not full or one of your kills was
just blank lines, the screen may be blank and a message appears in the minibuffer. The prompt

View Text: Type s, n, v, q, ?

appears in the minibuffer. These options are described in Table 3-5.

Table 3-5
Kill Ring Options

Option Description
Saves the current entry so that it can be yanked back immediately with

(yank_kill_text), described below.CtrIX CtrIZ CtrlY

Displays the next kill ring entry on the screen. After the display of the last
kill ring entry, you return to your original buffer, there is no message, but
the status line reflects the return.
Allows you to view text.
Quits displaying kill ring entries and takes you back to your original buffer.

3-42

Dictionary of EMACS Commands

The first entry you view on the kill ring is not necessarily the first or most recent text you killed.
I ctrix 11 ctriz | [k] shows you an arbitrary entry and then displays subsequent entries in order on
the ring.
If you give this command a numeric argument other than 1, EMACS displays the contents of a
special text kill ring. This kill ring works just like the standard kill ring and is used to save any
changes made as a result of the following commands: (1) I ctrix 11 ctriu | (uppercase_region), (2)
I ctrix 11 ctriL | (lowercase_region), (3) I Esc | [o~[(fill_para), and (4) untidy. In the case of the
latter two commands, the contents of temporary, intermediate buffers created during the
execution of the coinmands are maintained on the kill ring.

▶ v i e w j i n e s 1 c t n x 1 1 c t r i z 1 1 c t n v |
This command is used with the toggle_redisplay command. It displays one screen showing the
current EMACS activity, after which the screen display remains frozen.

▶ v i e w _ o f f I c t r i u 1 1 C t r I X 1 1 c t n v I
This command turns off view mode in the current buffer.

▶ view_on
This command is identical to view.

▶ vsplit
This command splits your screen vertically at point, if point is at least 10 characters from the left
margin. The cursor moves to the new window. The new window contains a display of the current
buffer until you read in a new buffer or file.
Any of the window commands that apply to horizontal windows apply to vertical windows, and
you may create more than two vertical windows. If you want to shift the window display
horizontally, you can use the horizjeft or horiz_right commands.

▶ wallpaper
This command inserts a complete list of current EMACS commands and functions into your
buffer.

▶ which_tabs
This command inserts a message in the minibuffer telling which tabs are now in effect.

3-43

EMACS Reference Guide

▶ w h i t e _ d e l e t e [E s c | [T J
This command deletes whitespaces (nonprinting characters) as follows:

• If the cursor rests on a character, EMACS deletes whitespace immediately preceding it
and adjusts any remaining text on the line to the left. The cursor moves with the
character it started oa

• If the cursor rests on a space, EMACS deletes whitespace immediately on either side
and adjusts any remaining text on the line to the left. The cursor moves to the first
character that followed the whitespace.

▶ wrap
This command is bound to the 1 space | key and I Return | in fill mode. It checks to see whether the
last character on a line extends beyond the fill margin and inserts a new line if it does.

▶ writejfile
This command saves the text in the current buffer in the file that you specify in response to the
prompt. By writing to different filenames, you can save an original file and all of its edited
versions. This command overwrites an existing file with no warning message.

▶ y a n k _ k i l l _ t e x t I c t r i x 1 1 c t r i z 1 1 c t r i Y |
This command yanks the text saved during view_kill_rmg and reinserts it in your buffer at point.

▶ y a n k _ m i n i b u f f e r 1 E s c 1 1 c t r i Y |
This command inserts the characters you typed as a previous minibuffer response into your buffer
at the current cursor position. It is most useful within the minibuffer prompt to retype a previous
response.

▶ y a n k _ r e g i o n I c t r i Y 1
This command yanks the most recently killed text from the kill ring and places it in the buffer at
point. It moves point to the end of the reinserted text and places the mark at the beginning of the
inserted text. Note that you can yank the same block of text from the kill ring as many times as
you like.

▶ y a n k _ r e p l a c e I E s c l H
This command recalls text from the kill ring, cycling through all the entries (including empty
ones) on the ring as the command is reissued. If you have not moved the cursor from its position
after a previous yank, I Esc | [y] replaces the just recalled text with the next latest ring entry. If you
have moved the cursor, text is inserted at point

3-44

Online Help Facility

Introduction
This chapter describes the EMACS online help facility that you can access with the 1 ctri_ I
(control underscore) command. The chapter explains how to decide which help command option
to use and how the options work.

EMACS Help Command
EMACS has an online help facility that you can use at any time during an editing session. To find
out which help command option is appropriate for your task, type the I ctri_ | command. EMACS
responds with the following prompt that provides a list of the help command options.

Help on tap: C-explain key, A=apropos, D=describe, L=last 20 chars, ?=more help

The help command is defined as follows:

K e y b i n d i n g C o m m a n d N a m e D e s c r i p t i o n
I ctr i_ | help_on_tap Lists opt ions for the help

command.

The help command options and brief explanations of them are as follows:

O p t i o n C o m m a n d N a m e D e s c r i p t i o n
A a p r o p o s L i s t s a l l c o m m a n d s r e l a t e d t o a n

operation.
C e x p l a i n _ k e y L i s t s w h a t a k e y s t r o k e d o e s .
D d e s c r i b e G i v e s i n f o r m a t i o n a b o u t c o m

mands and PEEL statements.
L L i s t s t h e l a s t 2 0 c h a r a c t e r s y o u

typed.
? L i s t s t h e h e l p c o m m a n d o p t i o n s .

4-1

EMACS Reference Guide

Note
You can invoke any of the help command options directly by typing
the option you want right after the main command without waiting for
the prompt. For example, I ctn_ I [TJ immediately lists the last 20
characters you typed. Options can be typed in either uppercase or
lowercase characters.

The following sections discuss each option.

Apropos
The Apropos option helps you determine which EMACS commands to use for a particular action
by giving you a list of possible commands for that action. For example, if you want information
about deleting, you would type I ctri_ | [aJ
EMACS prints the Apropos: prompt in the minibuffer and waits for you to respond with a
word that specifies a subject. You might type the word delete in response to the prompt, as
follows:

Apropos: delete

In this case, EMACS displays a list of commands containing the word delete at the top of your
screen, separated from your current text by a double row of dashes. If EMACS cannot find
information about your command, it responds with only the dashes. In that case, try another word
related to the subject, or even a portion of your original word. You must use ingenuity when you
specify subjects. For example, if you are interested in commands that kill backward and the string
backward_kill does not reveal any, do not give up. Try typing kill or backward or just
back. Be persistent. To clear the Apropos display and return to your current file, type I ctriG | (or
any character).
You can also invoke the Apropos option by typing I Esc| [xj apropos.

Explain_Key
The C option explains what a particular character command does. (C stands for character.)
When you type 1 ctri_ | [cl EMACS responds with the prompt:

Explain key:

in the minibuffer. It then waits for you to type in a sequence of characters that make up a
command and responds with an explanation of what that command does. For instance, if you type
1 ctriF | after the Explain key: prompt, EMACS responds with the explanation:

forward_char: Forward character

4-2

Online Help Facility

Keep in mind that because the C option explains only the first command you type after the
Explain key: prompt, you cannot use it to explain extended commands. If you type an
extended command, you will get an explanation of I Esc| [x], which was the first character
command you typed.
If you type keystrokes that EMACS does not recognize, EMACS prompts you with the following
error message:

Undefined key

You can also invoke the C option by typing I Esc | [T|.
If you need a more detailed description of a command, you can use the D option.

Describe
The D option describes EMACS commands and functions in detail. (D stands for describe.) This
option is very helpful when you are writing EMACS extensions. If you are writing an extension
and want to know the available functions that pertain to what you are doing, you can probably
find them with I Esc| [~xj describe.
When you type this command or I ctri_ | [51 to access the Describe option, the following prompt is
displayed in the echo area:

Describe (? for help) (q for exit):

Respond to the prompt by typing either the name of the function you want described or ? for help
about the option. You can exit from the Describe option at this point by typing q or pressing
I Return |.

Specifying Function Names for the Describe Option
If you type an unprefixed character string, EMACS switches you to a special buffer and displays
a list of all the EMACS functions whose names begin with the string you specified. The Describe
option also gives information about the & character and other single-character nonalphanumeric
printing characters.
If you type a character string preceded by @, EMACS displays a list (with descriptions) of all
functions that contain the string within their function names.
If you type a character string preceded by @(2>, EMACS displays a list (with descriptions) of all
functions that contain the string within their descriptions.
For example, if you type search, EMACS displays a list with descriptions of all functions
whose names begin with search, such as search_fd. If you type @ search, the list contains all
functions having search within their names, such as reverse_search. Finally, if you type
@search, the list contains functions that have search within their definitions.

4-3

EMACS Reference Guide

Command Options
The list of functions in the special Describe buffer is often too long to be viewed on one screen.
For this reason, the following viewer commands are available while you view the text in the
Describe buffer:

Option Name
Space or Return
b

1
P

Description
Moves the cursor forward in the buffer to the next screen.
Moves the cursor backward in the buffer to the previous
screen.
Refreshes the screen.
Prints a copy of the Describe buffer with the filename,
.viewer.print

q Exits the Describe buffer and sends you back to your original
text.

r Reverse searches for a str ing.
s S e a r c h e s f o r a s t r i n g .
> Moves the cursor to the end of the text in the buffer.
< Moves the cursor to the beginning of the text in the buffer.
? Lists the above Describe viewer commands.

If you type a command other than those listed above, EMACS responds with an error message.

Minibuffer Information
While you are viewing text in the Describe buffer, you will see the following message in the
minibuffer area:

- - 15% - - Viewer (type ? for help)

The number tells you approximately what percentage of the text in the buffer is currently above
the cursor. This can be very helpful when EMACS displays a long list of functions and you want
to know how much information follows what is currently on your screen.

L Option
The L help option displays a list in the minibuffer showing the last 20 characters you typed. (L
stands for list.) It is helpful when you make a typing error that modifies your text and you do not
remember what the error was. EMACS uses the caret (A) as a symbol for the Control key and esc
to signify the Escape key when it lists the characters.

4-4

Online Help Facility

? Option
The ? help option lists all the above options for the 1 ctri _ | command, as well as I ctri g
(abort_command).

4-5

Speed-type

Introduction
Speed-type is EMACS' abbreviation facility. When the speed-type environment is enabled, you
can define an abbreviation for a single word or a large amount of text. Then, whenever you type
the abbreviation during an EMACS session, EMACS expands it for you automatically. Three
examples of speed-type use are:

• Abbreviation of several words with a single short word.
• Correction of misspelled or mistyped words.
• Changing words from lowercase to uppercase or vice versa.

This chapter explains how speed-type works. The first part of the chapter shows how to create
speed-type abbreviations, how to save the abbreviations in a new speed-type file, how to use these
speed-type abbreviations from within EMACS or by using a command line abbreviation, and how
to add or delete abbreviations. The second part of the chapter is a reference section with detailed
explanations of each speed-type command.

How Speed-type Works
A speed-type abbreviation is a character string that you have defined during the current editing
session or saved previously in a special abbreviations file. Each time you type a separator (such
as a space) in the current buffer, EMACS checks to see if the text before point is an abbreviation.
If it is, EMACS expands the abbreviation for you. For example, you could set up the abbreviation
ema to stand for EMACS minibuffer area. Thereafter, each time you typed ema followed by a
separator, EMACS would replace it with the words EMACS minibuffer area.

Note
EMACS expands the string even if you enter it in a command line
within EMACS, so be careful not to define a component of a
command, (for example, add), as an abbreviation.

The definition of a separator varies according to your current mode. In fundamental mode, any
characters except letters or numbers are separators. I Return | and I ctri i |, which is the type_tab
command, also act as separators in fundamental mode.

5-1

EMACS Reference Guide

Language modes have their own separators. Speed-type keeps a list of the separators used in each
mode. You can get this list with the spdjist_all command, which is described later on in this
chapter.
EMACS commands (excluding I Return | and I ctri i |) are not considered separators. This means
you can type an abbreviation, move to another place in your file, and then go back to the
abbreviation and type the separator to cause expansion.
Before you can expand speed-type abbreviations, you must turn on the speed-type system. If you
have already created a file of abbreviations that you want to use, you need to load it into EMACS,
as described below.

Creating Speed-type Abbreviations Interactively
To create a speed-type abbreviation, enter EMACS, turn on speed-type with the spd_on
command, and create the abbreviation using the spd_add command. When the minibuffer
displays the Speed-Type symbol: prompt, type your abbreviation. Then, when the
minibuffer displays the Expansion: prompt, type the expansion of the abbreviation.
If the expansion is longer than the display line, you can type 1 ctric? | (Aq_quote_command)
followed by I Return | to see text that extends beyond the right margin. The I ctrio. | command tells
EMACS to interpret the I Return 1 as a normal carriage return instead of a terminator for your
definition; therefore, the cursor moves to the second line of the minibuffer where you can
continue typing your expansion. Terminate the expansion string by pressing I Return |.
If you want to create more than one speed-type abbreviation, go through the process again by
typing I Esc| [xl spd_add and answering the minibuffer prompts.

Note
To enter any speed-type command, type I Esc| [xl to cause the
Command: prompt to appear in the minibuffer area of your screen.
Then enter the speed-type command.

An example of creating an abbreviation is shown below. The minibuffer prompts are followed by
your entries. (Press 1 Return | after each entry.)

C omma n d: spd_on

Command: spd_add

Speed-Type symbol: ny

Expansion: New York

5-2

Speed-type

Creating Template Abbreviations Interactively
A template abbreviation system is also available interactively. You can create expansions called
placeholders that are simply sequences of characters that disappear as soon as you type text over
them. The sequence is bounded by the symbols < and >.
To create a template, turn on speed-type and create a speed-type symbol. Type a placeholder in
response to the Expansion: prompt. Respond yes or y to the next prompt, which asks if the
expansion is a template. The next prompt declares fundamental mode and the placeholder.
Respond yes to this prompt also.
An example of this procedure is shown below:

Command: spd_on

C omma nd: spd_add

Speed-Type symbol: bo

Expansion: <city>

Is this a template: yes

Declare fundamental "<city>": yes

This creates a template called bo. When you type the characters bo, the placeholder <city>
appears with the cursor resting on the < at the beginning of the word. The next character you type
erases the entire placeholder.
If you answer no to the Is this a template: prompt the characters <city> that you typed
as your expansion appear when you type the abbreviation bo. But, in this case <city> is not a
placeholder and the cursor does not rest on the < character. Rather, it rests after the space that
follows the expansion.
More information about templates appears later in this chapter in the section called Adding
Template Abbreviations to the Source File.

Other Expansion Possibilities
There are other useful commands for creating abbreviations. Using I ctri"x~[[JJ (spd_add_region)
you can define a region as the expansion of the abbreviation, or you can create an abbreviation
for the previous n number of words that you have typed. Spd_add_modaI allows you to define
an abbreviation for an EMACS mode. Refer to the Speed-type Commands Reference Section in
this chapter for explanations of these commands.

5-3

EMACS Reference Guide

Saving Speed-type Abbreviations
Unless you save the abbreviations that you have just created, you will not be able to use them
again after you terminate the current EMACS session. There are two ways to save your current
abbreviations so that you can use them in a future EMACS session without redefining them. You
need to save them in a special file, either during the current EMACS session or when you exit
from it. Each method is discussed below.
To see a list of all your current abbreviations, type:

Command: spd_list_all

Note
These instructions do not pertain to a session when you have loaded a
preexisting source file containing speed-type abbreviations into
EMACS.

Saving Abbreviations During an EMACS Session: To save your abbreviations during
your current session, use the spd_save_file command. EMACS prompts you for the name of your
new speed-type file and creates a file with the suffix .ESPD. The following example shows the
command, the prompts that appear in the minibuffer, and your responses.

Command: spd_save_file

Create new Speed-type file?: yes

Name of file: spabbrev

Add "ny": yes

Created SPABBREV.ESPD

Note
If you name an existing .ESPD filename for the new file, EMACS
issues another prompt:

Add "abbrev":

where "abbrev" is one of your new abbreviations. If your response is y
or yes, EMACS overwrites the existing file with the current
abbreviation(s).

Saving Abbreviations in a File as You Exit from EMACS: If you decide to save your
abbreviations in a file just as you are leaving EMACS, with the I ctrix 11 ctric | command, answer
yes or y to the Save Speed-Type changes?: prompt that appears in the minibuffer when
you give the exit command. The procedure for saving the abbreviations, with your responses to
the prompts, is as follows.

5-4

Speed-type

Save Speed-Type changes?: yes

Create new Speed-type file?: yes

Name of file: spahbrev

Add "ny": yes

Created SPABBREV.ESPD

If you have created more than one abbreviation, you may select which ones to save. Your
prompts could look like this:

Save Speed-Type changes?: yes

Prompt for each change?: yes

Create new Speed-type file?: yes

Name of file: spabbrev

Add "ny": yes

Add "nyl": no

Add "ny2": yes

Created SPABBREV.ESPD

You now have the file SPABBREV.ESPD in your directory with two speed-type abbreviations in
it. (If SPABBREV.ESPD already existed, EMACS overwrote it with the new abbreviations.) The
next section explains how to activate this file when you enter EMACS.

Using Saved Speed-type Abbreviations
There are two ways to load your abbreviation file into EMACS so that you can use the
abbreviations:

• Issue a command from EMACS during your current session.
• Specify the command line option -SPDT when you start EMACS at PRIMOS

command level.

This section discusses each method. Remember that to use the abbreviations, you must turn on the
speed-type environment.

5-5

EMACS Reference Guide

Loading the Abbreviation File from EMACS: You load an abbreviation file into the
current EMACS environment with the spd_k>ad_file command. The following example shows
the command and the prompts that appear in the minibuffer.

C omma nd: spd_ on

Command: spd_load_file

File to load: spabbrev

Loaded SPABBREV.ESPD

Note that EMACS has added the .ESPD suffix to your abbreviation file. When EMACS creates
an abbreviations file, it automatically assigns it the suffix .ESPD. Similarly, EMACS appends an
.ESPD suffix to the filename you specify to load. You do not add the .ESPD suffix when you
specify the file.
If you name a file that does not exist, the following message appears:

Loading Speed-Type FILENAME.ESPD: Not found.

Loading the Abbreviation File and Turning on Speed-type with Command Line
Option -SPDT: The second method of using speed-type is to use a PRIMOS command line
option that both turns on speed-type and loads a speed-type abbreviation file automatically when
it starts an EMACS session. The format of the option is as follows:

-SPDT pathname

where pathname specifies a speed-type abbreviations file.
If your speed-type abbreviations are in a file called SPABBREV.ESPD, your EMACS command
line could look like this:

EMACS [pathname] [arguments] -SPDT <DISKNAM>UFD>SPABBREV

Note that you do not type the .ESPD suffix when you type the pathname of SPABBREV. The
position of the -SPDT option on the command line is optional.

Note
EMACS command line arguments are described in Chapter 1 of this
book. Chapter 1 also explains how to construct a PRIMOS
abbreviation for your command line using the -SPDT option so that
speed-type is turned on each time you start EMACS.

5-6

Speed-type

Adding and Deleting Abbreviations Interactively
You may add abbreviations to your current speed-type environment at any time by turning on
speed-type, if it is not already on, and typing the spd_add command. To delete a single
abbreviation, use the spd_delete command. An example of the command and prompt for deleting
the abbreviation ny is shown below:

Command: spd_delete

Speed-Type symbol to delete: ny

To deactivate all of your abbreviations temporarily, use the spd_off command. Issuing the spd_on
command reactivates the abbreviations.
If you have loaded a speed-type abbreviation file into EMACS and want to add and save more
abbreviations, follow the procedures in the sections Creating Speed-type Abbreviations and
Saving Speed-type Abbreviations.
If you add one new abbreviation and do not save it in your current session, the following message
appears as you leave EMACS:

Save Speed-Type changes?:

If you answer yes, EMACS gives you a brief message that it rewrote your abbreviation file and
exits. If you answer no, there is no message.
If you have added more than one abbreviation to your abbreviation file that you have loaded into
EMACS, and exit EMACS without saving them, the prompts with your responses would look like
this:

Save Speed-Type changes?: yes

Prompt for each change?: yes

Add "ny": yes

Add "nyl": no

Add "ny2": yes

Rewrote SPABBREV.ESPD

Editing the Abbreviation Source Files
It is possible to add or delete abbreviations by editing the abbreviation file, rather than by entering
or deleting them interactively. Speed-type provides a way to do this from within a special
EMACS buffer called .spdjist

5-7

EMACS Reference Guide

When you request a list of current abbreviations with either the spd_list_all or spd_list_file
command, EMACS creates the list based on the abbreviation file(s) that have been loaded into the
current speed-type environment. Because this list is placed in the .spd_list buffer, you can edit it
just like an ordinary EMACS file. If no abbreviation file has been loaded, the spd_Iist_aH
command displays the empty .spdjist buffer, in which you can create a source abbreviation file.

Note
If you change the abbreviation file, you have to compile it and load it
again before you can use the added or changed abbreviations.

To enter the .spd_list buffer, give one of the following commands:

Command: spd_list_all

or

Command: spd_list_spabbrev

If you have loaded the SPABBREV abbreviation file that contains one abbreviation called ny into
the environment, the .spdjist buffer display appears as shown below with the cursor resting on
the home position of your screen:

t i i r i t i i t l r r r r i i i i i i i r i i i i i i r i i i i i i i i i i i i i i i > i r i i r i t i i r i l i i r i

t

mode fundamental "^iAj !-"#$%&'()*+,-•/: ;<=>?<§) [\] ~A_ * { | }—■"

i i r r r i r r r r r i i i t r i f > t i i i i r > i i r i r r r r r i r r r r r r i i r i r r i i r t i r i i i r r t r

** ny **

"New York"

The status line declares that the current mode is fundamental and lists the separators for
fundamental mode.
When you add or delete abbreviations to or from the source file, follow these formatting rules:

• Begin the line containing the name of the abbreviation in column 1 with two asterisks
(**), followed by a space. The name must be followed by a space and two asterisks. In
the example above, the name of the abbreviation is ny.

• Separate abbreviations by a line having at least one equal sign (=), which is in column
1. An entire line of equal signs is recommended.

• Begin and end each abbreviation's expansion with a double quote (").

5-8

Speed-type

Blank lines and comment lines are optional in the source file. They exist only to make the listing
more readable. You can type blank lines and comment lines (those beginning with semicolons)
before and after an abbreviation and its expansion, and before and after lines containing equal
signs. The only place a blank line is not ignored is within an abbreviation's expansion. If you
include a blank line within a set of double quotes, it becomes part of the expansion.
For an example, suppose you were adding two abbreviations to a source file listing. You might
type the following:

; abbreviation added on 2/14/87
** ORGR **
"ORGANIZATION IS RELATIVE; ACCESS MODE IS RANDOM,
RELATIVE KEY IS"

** USEA **
"USE AFTER STANDARD EXCEPTION PROCEDURE ON INPUT."

Adding Template Abbreviations to the Source File
You can also add templates to the source file in the .spdjist buffer by editing it Templates allow
you to create an expansion containing placeholders, which are inserted in your file during your
EMACS editing session.
Placeholders are simply sequences of characters that disappear as soon as you type text over them.
They are bounded by the symbols < and > in an abbreviation source file.
When you add new templates to the source file, follow these formatting rules:

1. Declare each placeholder in the mode declaration section of the source file so that
EMACS can distinguish it from ordinary text. You can list the placeholders in any
order. They do not have to correspond to the order in which they appear in the
template.

2. Type template after the second set of asterisks (**) on the abbreviation definition
line.

3. Type the text of the template, beginning and ending with a double quote ("). Include
the placeholder, bounded by < and >, in the text.

Two examples of templates are shown below. The first example shows templates that can be used
to facilitate document formatting with RUNOFF. Each template contains an example of
RUNOFF code for a format element. Included in this example are templates for a bullet list, a
note, and first-, second-, and third-level headings. The first line of each template is a comment
that describes its contents. Note that the RUNOFF code is enclosed in double quotes.

5-9

EMACS Reference Guide

r r r t r r r / r r t r t t i i r t r r / r r r r F r r r r r i i r r / r r r r t r r t r r r i r r i t r r r r r r r r r

r

mode fundamental "AiAj !-"#$%&'()•+,-./: ;<=>?@ [\] ~A_ x { | }—■"

place_holder <Text of bullet>
place_holder <Last item>
place_holder <Text>
placeholder <FIRST-LEVEL HEADINO
place_holder <Second-level Heading>
place_holder <Third-level Heading>
place_holder <Number>
place_holder <Title>

r r i i f r r r r r r r t r r r r r r t f / r r r r r r r r t t i t t i i i i i i i i i i i r i t r t i i r r r r r r i r

/Template for a bullet list

** bl ** template

" . i n 7
.p -3 1
ox*<Text of bullet>
•P
o * *<Last item>
.un7
.sk"

/Template for a note

** nt *• template

" .sk2
•>{{Note}}
.sk
, r i 4
. i n4
<Text>
.run4
.un4
.sk2"

5-10

Speed-type

r

r

/Template for a first-level heading.

** flh ** template

" .sk 3
<FIRST-LEVEL HEADINO
.Sk"

/Template for a second-level heading,

** slh •* template

".sk3
<Second-level Heading>
.sk"

/Template for a third-level heading.

** tlh ** template

".sk 2
<Third-level Heading>:"

In the sample listing, bl, the first abbreviation, is a template containing two placeholders. The
second abbreviation, nt, is a template containing one placeholder. The three abbreviations for
headings each contain one placeholder.
The second example of a speed-type template shows how to use templates to implement a
language format (COBOL, in this case):r mode cobol ";Aj !-"#$%&'()*+,./: /<=>?<§> [\] ~A_ M | }—■"
r r / > r / r / r f r r r r r r r / r f r r r r r r r r r t r r / r f r r r r t r r r r r r r r i / / r / r r r r r / r /

place_holder <boolean>
place_holder <statements>
place_holder <number>
r r r f r f f t r r r r r r r / r r r r r r r r r r r r r / r > r r / r r r r r / r r r r r / r / / r / r r /

** IFE • * template

"IF <boolean>
<statements>
ELSE

<statements>."

5-11

EMACS Reference Guide

** MIW •*

"MOVE INPUT-STRUCTURE WS-STRUCTURE
ADD 1 TO COUNTER."

** MIC ** template

"MOVE INPUT-STRUCTURE WS-STRUCTURE
ADD <number> TO COUNTER."

Note that in both examples, the placeholders are declared in the mode declaration section of the
file in addition to being defined in the abbreviation. You can also delete placeholder abbreviations
from the abbreviation source file. Remember to maintain the proper format of the remaining
sections.

Template Expansion
After expanding a template abbreviation in EMACS text, EMACS leaves the cursor at the first
placeholder in the expansion. Since it assumes you want to fill in the placeholder, the next
character you type erases the entire placeholder. For example, if you had typed the abbreviation
EFE from the sample source listing above, EMACS would insert the text below into your file at
point. The position of point after expansion is indicated by an underscore in this example:

IF <boolean>
<statements>
ELSE

<statements>.

If there are no placeholders in a template, EMACS places point after the expansion, as usual.
If you do not remove a placeholder from your text, it becomes part of the text. If you are entering
a program, the language compiler may flag it as an error.
EMACS has two special commands for moving to placeholders.

^ | c t r i x | j T) f o r w a r d _ p l a c e _ h o l d e r
This command moves point to the next placeholder without erasing or altering the current
placeholder. Point is left at the leading < character of the next placeholder.

Note
If you bind I ctrix | [T] to a printing key, execution of the command
erases the current placeholder before moving point to the next one. It
is more efficient to use I ctrix | (Tj to move to the next placeholder,
making it possible to locate the current placeholder later in your
editing session if you need to return to it.

5-12

Speed-type

▶ | c t r i x 1 [7] b a c k _ p l a c e _ h o l d e r
This command moves point to the previous placeholder. Point is left at the leading < of the
placeholder.

Changing Mode Separators in a Source File
By editing a source file, you can change the list of separators for a mode. (See the section, How
Speed-type Works, above, for information about separators.) To change the list, add or delete
characters in the first line of the mode section.
If you are creating your own mode, add the list of separators after the mode name. If you do not
add a mode separator list, EMACS will use the separators for fundamental mode.

Compiling and Loading the Source File
After you have finished making changes to the source file, you can compile the file, using the
spd_compile command. In the following example, the name for the output file is RUNO.

Command: spd compile

Name of output file: runo

Compilation completed

EMACS adds the suffix .ESPD to the name of the output file.
To load the new file, use the spdJoad_file command. The following example shows the
command and the responses for loading RUNO.

Command: spd_load_file

File to load: runo or *>mydir>runo

Loaded RUNO.ESPD

The abbreviations in your source file are now ready for expansion in your current EMACS
session.

Speed-type Commands Reference Section
This section discusses how all the EMACS speed-type commands work. For information about
adding a speed-type command to an EMACS library file, or binding a speed-type command to a
key, see the EMACS Extension Writing Guide.

5-13

EMACS Reference Guide

▶ b a c k _ p l a c e _ h o l d e r | c t r i x | | T 1

Usage: Moves point to the previous placeholder.
Point is left at the leading < character of the placeholder.

▶ f o r w a r d _ p l a c e _ h o l d e r | c t r i x | [7 \

Usage: Moves point to the next placeholder.
Point is left at the leading < character of the placeholder.

▶ spd_add

Usage: Adds an abbreviation to the current speed-type environment.
This command does not save the abbreviation permanently. When you type this command,
EMACS prompts you for the name of the abbreviation you want to add and the expansion of the
abbreviation.
If the expansion is longer than the display line, you can type I ctrio | (Aq_quote_command) to
see text that would otherwise extend beyond the right margin. The I ctrio. | command tells
EMACS to insert the I Return | as a new line character in the expansion, instead of using it to
terminate your definition.

▶ spd_add_modal

Usage: Defines an abbreviation specifically for a mode, such as fundamental, overlay, or fill
mode, or for programming language modes.
After prompting you for the abbreviation and its expansion, EMACS prompts you for the name
of the mode in which you want the abbreviation to be active. If the mode you specified is not
turned on at the time of definition, the abbreviation will not work. It is enabled only when the
mode is turned on.
When EMACS expands a modal abbreviation, it follows the rules of that mode. In COBOL
mode, for example, expanded text is placed in the appropriate columns automatically.
An example of this command is shown below:

Command: spd_add_modal

Speed-Type symbol: Is

Expansion: Los Angeles

Mode: fil l

5-14

Speed-type

_ ^ ▶ s p d _ a d d _ r e g i o n | c t r i x | f T |

Usage: Defines a region in text as the expansion of an abbreviation.
When you type I ctrix | [JJ, EMACS inserts the word speed_type into the status line. If you
move the cursor and type I ctn x | \T] again, EMACS considers the intervening text to be a region,
and prompts you for the abbreviation. After you enter the abbreviation, EMACS moves the cursor
back to its original position. If there are any leading or trailing spaces within the region, EMACS
removes them from the definition of the abbreviation.
You can give I ctrix | [TJan argument and it will take the specified number of words preceding
the cursor as the expansion for an abbreviation. For example, if you type I esc| [Tl I ctrix | \7],
EMACS takes the three words preceding the cursor as the expansion and prompts you for the
abbreviation.

▶ spd_compile pathname

Usage: Compiles the speed-type source file in the current buffer and writes it to the binary
output file specified by pathname.
If you do not specify a pathname, EMACS prompts you for it. EMACS will add the suffix
.ESPD to whatever filename you specify.
To use the newly compiled abbreviations in the current EMACS session, you must load the new
file using the spd_load_file command.

▶ spd_delete

Usage: Deletes an existing abbreviation from the speed-type environment.
When you type this command, EMACS prompts you for the name of the abbreviation you want
removed. After you respond, it removes the abbreviation from the current speed-type
environment. If the abbreviation occurs in different modes, EMACS removes it only from the
current active mode.
When you exit from the current EMACS session, EMACS gives you the Save Speed-Type
changes?: prompt. If you answer yes, and you loaded an .ESPD file during the current
session, EMACS overwrites the .ESPD file (or the first file read in, if more than one). If you
answer no, EMACS ends the session without saving the changes.

▶ spdjist

Usage: Prints information for you about an abbreviation that has been loaded into your speed-
type environment during the current EMACS session.
When you type this command, EMACS prompts for the name of the abbreviation. After you respond,
EMACS prints the text of the abbreviation (and other information associated with the it) at the top of
the screen. The information display disappears when you type a new character or command.

5-15

EMACS Reference Guide

▶ spdjist_all

Usage: Gives you information about all abbreviations currently loaded into the speed-type
environment.
When you type this command, EMACS switches you to a special buffer called .spdjist, which
contains a list of current abbreviations and their expansions. Here is a sample listing:

/
mode fundamental "A]iAj !-"#$%&'()*+,-./: ;<=>?@ [\] ~A_ M I }—■"

i i i i t r i i i i i i i i i i i i i i i i t i r i r i i i r i i f r i i r i t i i i i i i t r i t i i i i i i i i i i i

* * ema * *

"EMACS minibuffer area"

•k-k bOS **

"Boston "

f f f f f f f f f f f f f f f f f / f f f f f f / f

I

mode fi l l "AiAj !-"#$%&'()*+,-./: ;<=>?@ [\]~A_M I }—■"

r r i r r r r r r i f f f f f f f fi f / f f f f f f f f fi f

kk aqr **

" A l b u q u e r q u e "

■k-k Sf **

"Santa Fe"

Abbreviations in this listing are grouped according to mode rather than according to file.
Fundamental mode always appears first, and other modes follow in alphabetical order.
Semicolons distinguish one mode listing from another. Abbreviations are separated from one
another by lines of horizontal equal signs.
In the sample listing above, the only modes are fundamental mode and fill mode. The symbols
following the mode notation are the separators used in the mode. The first abbreviation listed is
ema. The following line of text, EMACS minibuffer area, is the expansion for the
abbreviation. Expansions always begin and end with double quotation marks ("). " >

5-16

Speed-type

▶ spd Jist_file pathname

Usage: Lists abbreviations found in the file specified by pathname.
This command is similar to spdjist_all described above, except that it lists only the abbreviations
found in the file specified by pathname.
If pathname is not given, EMACS prompts you for the name of the speed-type file. If you enter
the name of a file that you have not loaded into your current environment, an error message
notifies you that the file is not in the database.

▶ spdjoadjfile

Usage: Loads an abbreviation file into the speed-type environment.
When you type this command, EMACS prompts you for a filename. (Do not append the suffix
.ESPD when you enter the filename.) You can load up to ten files during one editing session. If
more than one file contains an abbreviation with the same name, EMACS expands the
abbreviation as it is found in the most recently loaded file.

▶ spd_on

Usage: Turns on the speed-type system.
Abbreviation expansion occurs if an abbreviation file has been loaded into EMACS or if you
have created abbreviations during the current session.

▶ spd_off

Usage: Turns off the speed-type system.
Any abbreviations files you have loaded remain available for use later in the editing session in
case you turn on speed-type again.
After you type this command, you can still add, delete, and display abbreviations, but EMACS
will not expand them.

▶ spd_save_file

Usage: Saves all the changes, including deletions, you have made to the current speed-type
environment.
It overwrites the first speed-type file you loaded into EMACS. (This file is referred to as the
primary file.)

5-17

EMACS Reference Guide

▶ s p d _ u n e x p a n d | c t r i x | [7]

Usage: Removes expansion from current buffer.
This command removes the most recently expanded text from the current buffer and reinserts its
abbreviation back into the text.
The cursor can be anywhere in the current buffer when you type this command.

5-18

Customized Library Files

Introduction
An EMACS library file typically includes commands and functions that set up your
individualized EMACS environment, commands that turn on certain EMACS modes such as fill
mode, or commands that set up customized keybindings.
This chapter provides the following:

• A discussion about how to create, save, and execute a library file, as well as how to
make library file coinmands available automatically at the beginning of each EMACS
session.

• A section on the file hooks mechanism.
• Instructions for adding keybindings to your library file.

User Library Files
A user library file is a standard PRIMOS ASCII text file that contains Prime EMACS Extension
Language (PEEL) statements. For complete instructions about writing PEEL statements, see the
EMACS Extension Writing Guide.
An example of a user library file is shown below:

(go_to_buffer "main")
(fi l l _ o n)
(setq default_right_margin 60)
(set_permanent_key "~c[OL" "delete_char")
(setq user_type$ fclerical$)

The commands in this example turn on fill mode in the buffer called main, set the right margin to
column 60, bind the PF12 key (on the PT200 terminal) to the delete_char function, and set your
user type to 'clerical$.

6-1

EMACS Reference Guide

How to Create, Save, and Execute a Library File
Your library file should include the commands that are necessary to set up your EMACS working
environment. An example of this type of command appears in the user library file example above.
The setq function, applied to the user Jype$ variable, sets your user type so that certain modes
are in effect when EMACS reads in a file. (User types are explained in the section on file hooks,
later in this chapter.)
The library file may also contain commands which facilitate and simplify your particular task of
editing or text entry. An example of this type of command is the set_permanent_key command
that binds the PF12 key on the PT200 terminal to the delete_char function. By binding your
customized functions to function keys on your terminal, you save keystrokes.
You can assign values to variables in a library file. For example, fill mode has a default right
margin of 70. If you want your right margin always to have a value of 60, rather than 70, you
may add the following statement to your startup library file (as shown above):

(setq default_right_margin 60)

After you have created the source code, you can make your file into an EMACS library file using
one of two methods:
Method One

1. Save the source code in a file with an .EM suffix, for example, USER_.LIB.EM.
2. Compile, load, and execute the .EM file at the beginning of each session with the

following command. Use I Esc | |"x~|to get to command mode.

Command: 1oad_pl_source

EMACS prompts you for the pathname of the source file.
3. Respond with the name of the .EM file (for example, USER_.LIB.EM). Then, EMACS

finds, compiles, and loads the file and executes the functions. Note that load_pl_source
does not execute commands in your file that are used with I esc| [x~1, but makes them
available for execution.

Method Two

1. From the buffer containing the source code file, compile and save the file with the
following command:

Comman d: duop_ file

This causes a fasdump operation. EMACS stores the compiled file in a file with the
suffix .EFASL.

2. From the same buffer, issue the following command to load the compiled file:

Command: load_compiled

6-2

Customized Library Files

3. Respond to the Fasdump file name: prompt as follows. Note that you do not have
to type the .EFASL suffix here.

Fasdump file name: user_lib
The file USER_LEB.EFASL is now in the directory you specified and is ready for
EMACS to call at startup time.

Loading a Library File Automatically
By using the -ULIB option in your EMACS command line, you can indicate that you want the
commands in a specified user library file to execute automatically when you invoke EMACS. The
following example shows a coinmand line that calls a library file:

OK, EMACS MY_FILS -TTP PT200 -ULIB USER>STARTUP. EM

This command line causes EMACS to load the file called MY.FILE into an EMACS buffer, to
recognize your terminal as a PT200, and to compile, load, and execute the commands contained in
the library file whose pathname is USER>STARTUP.EM. If you do not include a suffix on the
command line, EMACS looks for a library file with an .EM suffix first. If there is no file with an
.EM suffix, it looks for a file with an .EFASL suffix.
If you create an abbreviation for your EMACS invocation command line that contains the -ULIB
option, the specified library files are loaded automatically whenever you use the abbreviation to
start an EMACS session. A .EFASL file loads faster than its corresponding .EM file. Remember
to recompile the .EFASL file if you modify its counterpart .EM file.

File Hooks
EMACS is used by many people who have different needs. For example, when you are typing a
report, you usually want fill mode on so that you do not have to type carriage returns. However,
fill mode is not really useful when you are producing COBOL programs. Some people like
EMACS to be in overlay mode, but others use overlay mode only while editing tables.
Consequently, EMACS has a mechanism, called file hooks, that allows you to specify what
EMACS should do after it reads in a file.
When EMACS finds a file, it can check the file suffix, using the found_file_hook function, to
determine which mode to use. The file hooks mechanism can also check to see what category of
user is using EMACS. EMACS supplies three file hook categories.

Category Descript ion
clerical$ Invokes fill mode, unless you enter EMACS without specifying a file

name.
programmers Always invokes default modes for file type.
no_file_hooks$ No action is performed.

You or your System Administrator may create additional user types.
6-3

EMACS Reference Guide

Note
The file hooks mechanism for clerical! does not place the EMACS
buffers called main and alternate in fill mode. If you want these
buffers always to be in fill mode, place the following commands in
your startup library file.

(go_to_buffer "main")
(fi l l _ o n)
(go_to_buffer "alternate")
(fi l l _ o n)

If these commands are in your library file, the buffers are placed into
fill mode before EMACS reads in a file.

For the programmers user type, EMACS performs the following actions, depending on the suffix
of the file you select to edit.

Suffix EMACS Action
RUNI Invokes fill mode
EM Invokes LISP mode
LISP Invokes Common LISP mode
CBL Invokes COBOL mode
FTN, F77 Invokes FORTRAN mode
RPG Invokes RPG mode
VRPG Invokes RPG mode
CorCC Invokes C mode
COMO No action taken

Setting a File Hook
To set a file hook, use the setq function to initialize the userjype$ variable. For example, the
following statement causes EMACS to use the 'programmers file hook:

(setq user_type$ 'programmer$)
If you create a user type called data_entry$, you would use the following statement:

(setq user_type$ 'data_entry$)
To set your user type in a library, include one of the following statements:

(setq user_type$ 'programmer$)
(setq user_type$ 'clerical$)
(setq user_type$ 'no_file_hooks$)
(setq user_type$ 'user_defined$)
where ' user_def ined$ is a type that has been created and defined according to the procedure
described below. The setq user Jype$ command should be the last command in your library.

6-4

Customized Library Files

Creating and Changing File Hooks
You can create your own user type by writing a PEEL function. Refer to the EMACS Extension
Writing Guide for information about writing functions. The following example shows the
structure of a function for a programmers user type. The semicolons are followed by explanatory
comments.

text mode

lisp mode

common lisp mode

cobol mode

fortran mode

rpg mode

c mode

(defun programmer$ ()
(select (suffix$)

" r u n i "
(fi l l _ o n)

"em"
(l isp_on)

" l i s p "
(cl_on)

" c b l "
(cbl_on)

"ftn" "f77"
(fortran_on)

"vrpg"
(vrpg_on)

"c" "cc"
(cc_on)

"como"
0

otherwise
0

))

This function consists of three parts:

1. The defun (define function) statement, followed by the name of the user type.
2. The select statement followed by the word suffix$ within parentheses. The select

statement evaluates and compares the values to determine the appropriate action. The
suffix$ function checks a file's suffix.

3. A list of suffixes and what actions to perform.

Suppose you have a file type that has a suffix of rpt (for report) which consists mainly of tables.
When you are editing reports, you do not want to change the column positions. You could add the
following line to the list of suffixes and actions:

" r p t "
(overlay_on) ; overlay mode for tables/reports

6-5

EMACS Reference Guide

Suppose the report document always contains a five-line header that you want to skip. You could
add the following code:

" r p t "
(overlay_on)
(i f (fi rs t_ l ine_p)

(next_line_command 5))

where if and f irst_line_p are PEEL statements. Here they ask: "Is point on the first line of
the buffer?" Note that the argument to the nextJine_command command must be contained
within the parentheses.
If you know the keypath, but not the name of a command you would like to include in the code,
type I ctri, | and respond to its query with C. When you type in the actual keypath, EMACS
displays the name of the command and a brief description of it.
After you have created a function, the name of the function becomes a new user type. For
example, if you create a function called data_entry$, then data_entry$ becomes the user type:

(defun data_entry$
(select (suffix$)

))

(setq user_type$ 'data_entry$)

Creating Your Own Interface
EMACS can make use of your terminal's function keys that are situated across the top and on the
right and left sides of the keyboard. Use the set_permanent_key command to bind a customized
function to one of the terminal keys. This function has the following structure:

(set_permanent_key "keypath" "command")

For example, on the PT200, function key PF12 transmits the following sequence:

[Escl [Pi I Esc| rn

This sequence is represented by the character sequence "~c[OL". If you want to bind the
delete_char function to the PF12 key, simply insert the following function in your source file:

(set_permanent_key "~c[OL" "delete_char"))

(The conventions for typing keystrokes to this command are described in Chapter 2 of the
EMACS Extension Writing Guide.)

6-6

Customized Library Files

The following files contain lists of function key keypaths for the PT45, the PST 100, and the
PT200 terminals.

EMACS*>INFO>KEY_ASSIGNMENTS.EM
EMACS*>EXTENSIONS>SOURCES>PT45_FUNCTION_KEYS.EM
EMACS*>EXTENSIONS>SOURCES>PST100_FUNCTION_KEYS.EM
EMACS*>EXTENSIONS>SOUR(̂ S>PT200_FUNCTION_KEYS.EM

If you are rebinding for your own use, the library file procedure meets your needs completely.
You can bind EMACS functions to any keystrokes. In addition, you can create your own
functions and bind them to keys.
However, to set up an interface that many people will use, you will want to do things in a more
general way, as described by the following steps:

1. Create a file that contains all the function key definitions. For example,

(setq pfl2_pt200$ "~c[OL")

2. Create a file that contains all the commands that will exist in your command set.
Adding new commands is permitted.

3. Create a third file that contains the actual bindings. For example, if you defined in Step
1 what function key PF12 is, you might type

(set_permanent_key pfl2_pt200$ "delete_char")

You would have one of these statements for every new assignment.
4. Modify the startup library file so that the files are loaded, and these bindings will come

up automatically. Your entries in the library file could be:

(fasload "key_assignments")
(fasload "extension_file")
(fasload "binding_file")

Creating separate files lets you use different bindings or definitions for different circumstances.
For example, suppose that you want to create two sets of bindings for one terminal. By placing
the key assignments separate from the definition of the bindings, you can use the definitions in
more than one way. Also, this system allows you to bind equivalent functionality to more than
one kind of terminal even if the terminals do not have ASCII standard function keys.

Simplifications You Can Make
Toggles
In a keybinding set, it is often desirable to have one key that performs more than one function.
For example, suppose you want to use function key PF12 so that the first time it is used, it turns
on overlay mode, and the second time, it shuts off overlay mode. This may be done as follows.

6-7

EMACS Reference Guide

(defcom toggle_overlay_on
(overlay_on)
(set_permanent_key "~c[OL" "toggle_overlay_off"))

(defcom toggle_overlay_off
(over lay_off)
(set_permanent_key "~c[OL" "toggle_overlay_on"))

(set_permanent_key "~c[OL" "toggle_overlay_on"))

The sequence "~c [OL" is assumed to be the keystroke characters sent by the terminal. The first
time PF12 is typed, it activates the toggJe_overlay_on ftmction. As it executes, it changes the
definition of PF12 so that the next time it is typed, it activates the toggle_overlay_off function.
When this function executes, it changes the binding on PF12 so that toggIe_overlay_on is now
bound to PF12.

Note
This toggling can be used with nearly all EMACS functions. The
exceptions are collect_macro and finish_macro.

The toggle procedure has one inherent weakness. If the toggle sets a mode, the mode is buffer
specific. However, when you switch to a different buffer, problems may occur because the buffer
is not synchronized with what the function expects. One solution is to use a set_key command
rather than a set_permanent_key. This command localizes the change to your current buffer.

A more general solution is to determine what state the buffer is in, with the bufferJnfo function.
The buffer Jnfo function is used in the following example to check a buffer's mode list.
Depending on what it finds, it turns overlay either on or off. For example,

(defcom toggle_overlay
doc "Alternates between overlay mode on/off"

(if (member (find_mode 'overlay) (buffer_info modes))
; when in here,overlay mode is ON already

(over lay_off)
e lse

(overlay_on)))

You can simulate this procedure for functions that are not modes by using buffer Jnfo's user list.
(For more information on using the buffer Jnfo function, see the EMACS Extension Writing
Guide.) The toggle method presented at the beginning of this section is the one to use when
moving back and forth between procedures that are globally set.

Menus
It is inefficient to create menus that let the user select only one option. Here is a small menu
function that puts help_onJap functions onto a menu.

6-8

Customized Library Files

(defcom help_menu
doc "Presents help stuff on a key"

(save_excursion
(go_to_buffer ".help_menu")
(if (empty_buffer_p)

(inser t "1 Apropos~n")
(i nse r t "2 Exp la in~n")
(inser t "3 Descr ibe~n")
(inser t "4 Wal lpaper~n")
(buffer_info changed_ok true)
(buffer_info read_only true)
(buffer_info dont_show true))

(select (prompt "Help")
"1" (apropos)
"2" (explain_key)
"3" (describe)
"4" (wallpaper)
otherwise

(r ing_the_bel l)
(info_message "Unknown function")))

For explanations of the functions in this menu, refer to the EMACS Extension Writing Guide.
After you have saved, compiled, and loaded this file, you can execute the menu function by
typing I Esc | |~x1 help_menu. For explanations of the help_onJap command, see Chapter 4,
Online Help Commands.

r
r 6-9

The TERMCAP Facility

Introduction
TERMCAP is the name of a file that contains information about the operating features of many
different terminals. The TERMCAP file is located in the directory EMACS*>TERM. A
TERMCAP description for any given terminal is called an entry. At present the TERMCAP file
contains entries for approximately two hundred terminals. Some of these entries contain
capabilities that are not supported by Prime and are ignored by EMACS. This chapter describes
only the TERMCAP capabilities that are currently supported by EMACS.
Terminals can differ greatly from one another. Before TERMCAP was developed, a programmer
had to rewrite portions of the source code to create individual drivers for each terminal and then
recompile the entire editor program. With TERMCAP, a programmer can add an entry to the
TERMCAP file to support a new terminal without revising or recompiling the source code for the
editor. Because the file is used whenever EMACS is invoked, all users on a system can use any
entry in the TERMCAP file.
This chapter is divided into three parts:

• Using TERMCAP with EMACS
• TERMCAP capabilities
• Adding a new terminal description to the TERMCAP database

Note
The TERMCAP file is in the public domain and is made available to
the user by courtesy of Prime Computer, Inc. Prime makes no
representations or warranties whatsoever regarding this file, or the
ability of any Prime software, when combined with this file, to operate
on any terminals other than Prime terminals. Prime also disclaims any
obligations to maintain or support this file or any similar file now or in
the future.

7-1

EMACS Reference Guide

Using TERMCAP With EMACS
There are three ways to indicate your terminal type to EMACS. You can use the -TTP option on
the command line that invokes EMACS:

EMACS filename -ttp terminaljype

EMACS also recognizes the global variable, .TERMINAL_TYPE$. If you use the -TTP option
or if you set .TERMTNAL_TYPE$, EMACS looks in the TERMCAP file for the definition of the
specified entry. Another global variable, .TERMCAPS, lets you specify a pathname to a
TERMCAP entry that is not in the standard TERMCAP file. Setting these two global variables is
explained in the following section.

Global Variables
You can set the two PRIMOS global variables:

.TERMINALJTYPES This global variable contains the name of the terminal you
wish to use. It will be used if you do not specify the -TTP
option on the command line.

.TERMCAP$ This global variable contains the user's TERMCAP database
pathname. If it is not set, the default is
EMACS*>TERM>TERMCAP. By defining a terminal in a
separate file, a user can debug an entry before adding it to the
TERMCAP database. The TERMCAPS variable specifies the
pathname of the file that contains the entry.

Before using either of these variables, you must create and activate a global variable file, which
will contain the variable definition. (See the Prime User's Guide for more information about
global variables.) To define .TERMINAL_TYPE$ as PETE, for example, you would enter this
line in the global variable file:

SET_VAR .TERMINAL_TYPE$ PETE

To define the variable .TERMCAPS as the pathname <DSKNAM>MYDIR>TERMCAP>PST,
you would enter this line in the global variable file:

SET_VAR .TERMCAP$ <DSKNAM>MYDIR>TERMCAP>PST

Assume that <DSKNAM>MYDIR>TERMCAP>PST contains the definition of PETE. Now, if
you invoke EMACS without using the -TTP option, the .TERMINAL_TYPE$ variable
definition, PETE, specifies the terminal type; the .TERMCAPS variable definition gives the
pathname to PETE's definition in the file PST.

7-2

The TERMCAP Facility

If you do not give a terminal name, either in the command line or in a global variable, the
following message appears:

OK, emacs

A terminal type has not been specified.
You must specify a terminal type which EMACS recognizes.

EMACS recognizes the PT200, PST100, PT45 and all
other terminal types defined in the TERMCAP data base
file [pathname: EMACS*>TERM>TERMCAP].

Please enter your terminal type
if it is among those which
EMACS recognizes, or enter the word "none":

To find out which terminals are in the TERMCAP database, you can look at the TERMCAP
database file in EMACS*>TERM.

Note
The -TTP option used on the command line overrides the global
variable containing the name of the desired terminal type. An example
is shown below.

EMACS -TTP PST100 "NOXOFF -DLIB <DSKNAM>MYDIR>STARTUP.EFASL

By issuing this command, you would access the PST 100 rather than
the PETE terminal.

When you specify a terminal with -TTP that is not the PST 100, PT200, or PT45, EMACS
searches the TERMCAP database for an entry that describes that terminal. If you give an
incorrect terminal name (not the PST 100, PT200, or PT45), for example, XYZ, the following
message appears:

OK, emacs ~ttp xyz

The terminal type specified is not contained in the TERMCAP
data base file.

XYZ is not a terminal type which EMACS recognizes.
You must specify a terminal type which EMACS recognizes.

EMACS recognizes the PT200, PST100, PT45 and all
other terminal types defined in the TERMCAP data base
file [pathname: EMACS*>TERM>TERMCAP;.

Please enter your terminal type
if it is among those which
EMACS recognizes, or enter the word "none":

7-3

EMACS Reference Guide

TERMCAP Capabilities
This section contains information that will help you prepare your own TERMCAP entry. The
following topics are discussed:

• Data types of the TERMCAP capabilities
• TERMCAP capabilities grouped according to category (Table 7-1)
• Discussion of the capabilities
• Control characters, delay padding, and placeholders

Data Types
There are three data types for TERMCAP capabilities:

• Boolean: A Boolean value is either on or off. When you include a capability in your
entry that takes a Boolean value such as in, it means that the insert mode that
distinguishes nulls is turned on.

• Numeric: Terminal characteristics such as the number of lines or columns are numeric.
The format of a capability that takes a numeric data type is the name, followed by a
sharp character (#), then the numeric value. For example, li#24 shows the number of
lines that a screen displays.

• String: Capabilities that take a string data type are those that perform a specific
function. The format of a capability that takes a string data type is the name, followed
by an equal sign (=), then the string. For example, cl=Az represents the clear screen
feature.

The EMACS TERMCAP handler has five categories of capabilities:
• Basic terminal features
• Screen movement
• Screen update
• Software control of terminal
• Special characteristics

Table 7-1 lists the capabilities by category. Within each category the data type and feature of each
capability are described. Following the table are descriptions of each category.

7-4

The TERMCAP Facility

Table 7-1
TERMCAP Capabilities by Category

Basic Terminal Features
Name Data Type Description
CO Numeric Number of columns on screen
li Numeric Number of lines on screen
Screen Movement
Name Data Type Description
be String Backspace character if not Ah
cm String Cursor motion
ho String Home
nl Suing Newline character if not Aj
up String Cursor up
Screen Update
Name Data Type Description
al String Add blank line
ce String Clear to end of line
cd Suing Clear to end of display
cl String Clear screen
cs String Change scrolling region (VT100)
dc String Delete single character
dl String Delete line
dm String Enter delete mode
ed Suing End delete mode
ei Suing End insert mode
k Suing Insert character
im String Insert mode
in Boolean Insert mode distinguishes nulls
•P String Insert pad after each character inserted
Ik String Lock line
ua Suing Unlock all lines
uk Suing Unlock line
Be Numeric Baud rate above which to ignore im, ic, and dc
Bl Numeric Baud rate above which to ignore dl and al
Software Control of Terminal
Name Data Type Description
is String Initialization string
te String Ends programs for cursor motion
t i String Begins programs for cursor motion
ve String End open/visual mode
vs String Start open/visual mode

Special Characteristics
Name Data Type Description
pc String Pad character if not NULL
tc String Entry for similar terminal
xc Boolean Cursor addressing relative to scroll region
xk Boolean Unsafe to move cursor with lines locked

7-5

EMACS Reference Guide

Basic Terminal Features
co indicates the number of columns on each line of the terminal screen. Ii gives the number of
lines on the screen.

Screen Movement Features
be means that a character other than I ctrm | (the default) executes the backspace. Cursor motion,
or cm, is discussed later in this section, ho takes a string data type that sends the cursor home, that
is, to the upper left corner of the screen, nl indicates a newline character that is not I ctru |. up
tells how to move the cursor up a line in the same column on the screen.

Cursor Motion: Cursor motion enables you to move directly to any position on the screen. To
initiate cursor motion, most terminals need an initial escape sequence, followed by the destination
line, then the column. TERMCAP uses a variety of escape sequences, but line and column
specifications are often the same for different terminals. On most terminals, lines and columns are
not indicated by numbers, but by characters with ASCII values.
The following list shows the meanings of the % codings for cursor motion:

Code Description
%d Prints number as a decimal number.
%2 Prints number right justified as two digits with preceding 0 if needed.
%3 Prints number right justified as three digits with preceding 0's if needed.
%. Outputs number as a character byte, coded in ASCII.
% +x Adds the ASCII value of character x to value, then outputs the value as a charac

ter byte.
%>xy If value > x, then value = value + y. Does not output anything.
%r Reverses order of lines and columns so that column number is given before line

number. No output.
%i Increments line and column (for 1 origin). No output.
% % Produces a single %.
%n Exclusive-or row or column with 0140 (for DM2500). No output.
%B BCD (16*(x/10)) + (x%10). No output.
%D Reverse coding (x - 2*(x%16)). No output (Delta Delta).
%R x relative to y (i.e., x = x - y + 1). No output.

For example, the Ann Arbor Ambassador terminal uses a straightforward method of cursor
addressing. To place the cursor on the 11th line, 11th column, the Ambassador requires the escape
sequence Esc [11; 11H. The cursor motion capability is as follows:

:cm=\E[%i%d;%dH:

7-6

The TERMCAP Facility

The two %d strings are similar to the printfO statement in the C programming language, in that
they indicate that the number is a digit. The %i means that line and column counts must be
incremented. Ordinarily, they start with zero, but on the Ambassador, they begin with one.
The most common method of addressing screen positions is by adding the ASCII value of a space
to the numbers of the line and column (starting at zero). In this case, the cursor motion string
contains the code %+space. The ASCII value of space is 32 decimal. To move to line 11,
column 11 (really line 10, column 10, because we started at zero), we add 10 to 32, producing 42,
which is the decimal value of the ASCII character asterisk, *'. For example, the Lear-Siegler
adm3a terminal's cursor motion string is

:cm=\E=%+ %+ :

This string moves the cursor to line 10, column 10, with the escape sequence Esc=**.
The Digital Equipment VT52 and the Zenith hl9 use a similar cursor motion string:

:cm=\EY%+ % + :

On these terminals, the cursor moves to line 10, column 10, with Esc Y**. Most terminals use
printing ASCII characters to indicate line and column location, but some use control characters.
On these terminals, Control-® would represent the first line or column. In this case, %. is used
instead of %+space. The dot indicates that the given numeric value is used without adding the
value of a space. When a terminal uses %., it should be able to backspace the cursor and to move
the cursor up one line (up).
Another example of cursor motion that shows padding is shown next:

:cm=6\E&a%r%2c%2Y:

To position to line 3, column 12, on the HP2645, the escape sequence is Esc&al2c03Y, padded
for 6 milliseconds. The %r shows that the order of lines and columns is reversed. Note that the
line and column numbers are printed as two digits.

Screen Update Features
al indicates that if the cursor is at the first position on a line, the terminal can open a blank line
before the current line. The cursor then appears on the new blank line, ce shows that the terminal
can clear to the end of the line, leaving the cursor at its current position, cd means that the
terminal can clear from the current position to the end of the display, cl means that the terminal
can clear its screen.
To lock a portion of the screen, cs defines a scrolling region, or a subwindow of the screen that
becomes active, thereby deactivating or effectively locking those lines outside of the scrolling
region. The format of cs is the same as cm, except that the top line of the scrolling region is
called x, and the bottom line is y. The definition for the VT100 is the following:

\E[%d;%dr

7-7

EMACS Reference Guide

For cs, %r indicates that the number of lines is the second parameter for the scrolling region
command, rather than the bottom line. %r must be the first encoding specified in cs.
dc deletes a single character while in delete mode, dl means that if the cursor is on the first
position of a line, the terminal can delete the line, dm specifies delete mode, while ed indicates
the exit delete mode.

Insert mode: Some terminals have an insert mode, while others send a sequence to open a
blank position on the current line, im is the capability to get into insert mode (give im an empty
value if your terminal inserts a blank position), ei is the capability to leave insert mode (give it an
empty value also if you gave one to im). ic is any sequence to be sent just before inserting a
single character. If your terminal has insert mode, you probably would not use ic, but you would
use it for the terminal that opens a screen position. Use ip for post insert padding in milliseconds.
ip may also include any other sequence that needs to be sent after inserting a single character.
Terminals handle insert/delete characters in two different ways. The most common method of
inserting affects only characters on the current line and shifts characters off the edge of the screen
at the end of the line. The other method, used by the Concept-100 and the Perkin-Elmer OWL,
makes a distinction between typed and untyped blanks on the screen. When these terminals insert
or delete, they shift only to an untyped blank on the screen. This blank is either eliminated or
expanded to two untyped blanks.
To determine which type of terminal you have, clear your screen and type the following phrase,
separated by cursor movements only:

asd jkl

Do not type spaces between the groups of letters. Then, position the cursor before the asd and
insert several characters. If the rest of the line shifts rigidly so that characters disappear off the
end of the line, you have the first type of terminal, one that does not distinguish between blanks
and untyped positions.
If the asd shifts over to the jkl, then both groups of letters move together, you have the second
type of terminal. This terminal should have the capability, in, which means insert null. If your
terminal does not fall into either of these two classes, you may have to change your TERMCAP
entry.
The capabilities Ik and uk lock and unlock specific lines. Both Ik and uk are specified like cm
where the affected line is the single parameter. It is assumed that locking or unlocking a line does
not alter the current cursor position. For terminals that require the cursor to be positioned to the
line to be locked or unlocked, the sequence must first save the current cursor position, then move
it to the affected line, lock or unlock it, and finally restore the cursor position that was saved
away. (If the terminal cannot save or restore cursor position, Ik and uk should not be specified.)
ua is the command to unlock all lines, which is preferable to unlocking all locked lines
individually.
The numeric capabilities Be and Bl specify the baud rate at or below which the terminal
capabilities for insert/delete character and insert/delete line, respectively, are used. Baud rate is
specified to EMACS via the -SPEED or -BPS option, and defaults to 9600.

7-8

The TERMCAP Facility

Software Control
is initializes the string for setting options, ti and te are used to enter and exit a special mode for
cursor addressing, if your terminal requires iL Terminals that have more than one page of memory
need this special mode. In order for cursor addressing to work properly on a terminal that has
only memory relative cursor addressing (not screen relative cursor addressing), a screen-sized
window must be fixed into the terminal, vs and ve are the start and end of sequences to change
the cursor on the screen from an underline to a block and back. These sequences enhance cursor
visibility while in EMACS.

Special Characteristics
pc shows that the terminal requires a character other than an ASCII NUL as a timing pad.
tc indicates that two terminals are almost alike. It must be the last capability in the entry and is
followed by the name of the similar terminal in the TERMCAP database. Because the TERMCAP
entry is searched left to right, capabilities defined to the left of tc override the capability
definitions for the similar terminal. You can also disable a capability by appending an @ to its
name in the definitioa
For an example, refer to Figure 7-1, which is taken from the EMACS*>TERM>TERMCAP file.
Note that this example contains the capability if, which is not supported by Prime. (As noted
earlier, other entries in the TERMCAP file may also contain capabilities not recognized by
EMACS.)
Figure 7-1 illustrates several points:

• The capabilities to the left of tc override capabilities in the similar terminal (vtlOO).
• The if and is capabilities are turned off.
• tc is the last definition in the entry.

dO|vtl00n|vtl00 w/no init: is@:if@:tc=vtl00:

Figure 7-1
Using the tc Capability

xc indicates whether cursor positioning addresses are affected by the scrolling region. For
example, if addressing is relative to the top line of the region, xc is specified, xk flags those
terminals in which it is unsafe to perform cursor positioning while lines are locked on the screen,
for example, the Prime PST 100.

Control Characters, Delay Padding, and Placeholders
This section explains how to indicate control characters in capabilities that take a string data type,
add padding characters, and use a placeholder to indicate the number of times that a command is
to be repeated.

7-9

EMACS Reference Guide

Control Characters: In capabilities that take a string data type, control characters are
indicated either by an up-arrow (A) or by the string escape character (\). For example, *c stands
for | ctric |, and\Ec maps to I esc| |T|. The\character may be produced by \v; the A character, by
\A. To include a colon, put it in as an octal value by using the string escape character followed by
the octal value (\272 or W2). A null character isN200.
The following list shows the escape sequences and their results:

Escape Sequence Result
\E Escape character
A Control character
\nnn Octal value of character
\n Newline (AJ)
V Return (AM)
\t Tab (AI)
\b Backspace (AH)
\f Formfeed (AL)

^N

Delay Padding: When the terminal is slow in performing a function, it needs padding
characters for each affected line. The time delay in milliseconds is shown by an integer (for
example, 10) or by an asterisk (*) after the integer (10*). The asterisk after the number indicates
that 10 milliseconds of null padding will be repeated for each line affected by the operation.
When the asterisk is used, it may be necessary to use the form "10.5" indicating a delay to tenths
of milliseconds per unit. For example, the correct way to enter padding characters at the
beginning of a string is : dl=5*\ER:. The asterisk after the numeral 5 shows that null padding is
repeated for each deleted line.

Placeholder Sequence: Any string entry may contain a placeholder sequence indicating that
the count for the number of times that command is to be executed may be included as part of the
command in the indicated format. ANSI-compatible terminals support this notion, and the PST 100
entry (see Figure 7-3) shows many examples of its use. This sequence is supported in the following
formats:

%d Like "printfO" in C language.
%2 Prints number right justified in two spaces.
%3 Prints number right justified in three spaces.
%. Outputs number as a character byte, coded in binary.
%+x Adds the character x to value, then outputs the value as a character byte.
% % Produces a single %.

7-10

The TERMCAP Facility

This list is a subset of the formats supported for cursor addressing. As an example of how this
information is used, to delete five lines on the CONCEPT-108, you would use the sequence
\eab\eab\eab\eab\eab or five :dl=\EAB: occurrences. To perform the same operation on
the Prime PST 100, you would use \E [5M. This sequence is much more concise (and faster) than
sending five \E [IM sequences. Thus, the PST 100 defines : dl=\E [%dM:.

Adding an Entry to the TERMCAP Database
The Prime TERMCAP database resides in the file EMACS*>TERM>TERMCAP. This section
tells you how to add your own entries to the TERMCAP file. It contains the following topics:

• A discussion of what you need to know before starting
• Two examples: a simple entry and a complex entry
• Testing a TERMCAP entry
• An alphabetical list of the TERMCAP capabilities (Table 7-2)

Before Starting
Before adding entries to TERMCAP, you should have at hand the manual that describes your
terminal's features. As you construct your entry, you may want to begin by using as a model an
existing TERMCAP entry for a terminal that is similar to yours.
Put the entry in its own file so that you can test and, if necessary, revise it before you add it to the
TERMCAP file. You can do this by using the .TERMCAPS global variable (discussed earlier) to
specify the pathname for the file containing the entry you are working on.

Note
When preparing a new TERMCAP entry, if your terminal transmits AJ
for newline and AH for backspace, you do not need to define nl or be,
because your terminal uses the defaults for these capabilities.

Building and Testing a TERMCAP Entry
You should observe the following guidelines as you begin building and testing a TERMCAP
entry. Do not work directly in the TERMCAP file. Create a separate file to hold the working
version of your entry. Then, when you are ready to begin testing, use the .TERMINAL_TYPE$
and the .TERMCAPS global variables to specify the name of the terminal and location of entry to
be tested. (See Global Variables above for a description of how to use these variables.) When you
are satisfied that the entry is correct, have the System Administrator add it to the TERMCAP
database. If this entry is to be used frequently, it should be located at the beginning of the file,
because EMACS searches sequentially for an entry.

7-11

EMACS Reference Guide

Structure of Two Entries
An entry is readable as normal text, although it looks rather cryptic. Figure 7-2 shows the first
two lines of an entry for a hypothetical terminal.

Terminal Aliases

XI|PETE|DRIVER FOR THE PETE TERMINAL:\
:cl=\Ea:ce=\Eb:co#80:l i#24:

Clears Screen

Clears to End of Line

24 Lines

80 Columns

Figure 7-2
Two Lines of a Simple TERMCAP Entry

The first line is a list of aliases (names) for the terminal. The first two letters, XI, are a code for
the terminal. They are followed by a common name for the terminal, PETE. A longer description
of the terminal, DRIVER FOR THE PETE TERMINAL, completes the first line.
The first two names contain no blanks; however the description may contain blanks for
readability. A vertical bar (I) separates terminal names, whereas a colon (:) ends the list of aliases.
If a TERMCAP entry needs more than one line, the backslash character (\) at the end of the line
shows that the entry continues to the next line. You should indent subsequent lines, for
readability.
The second line is a list of two-letter capability names, followed by their arguments. Capabilities
explain how the terminal accomplishes some well-defined task (like clearing the screen or moving
the cursor). All capabilities are separated by colons. In this example, ̂ E maps to an escape
character.
The full entry for the Prime PST 100 terminal is shown in Figure 7-3. This particular entry may
be outdated, and is used as an example only. Note that the PST 100 entry contains some
TERMCAP capabilities that are not supported by Prime and therefore are not documented in this
chapter. Because EMACS ignores these capabilities, and recognizes only capabilities supported
by Prime, including them in the entry causes no harm.

7-12

The TERMCAP Facility

PI Ips t l00 |p t200|wren | fen ix lp r ime ps t l00 /p t200: \
: i f=emacs*>term>tabset>pstlOO:\
: t i= \E[> l l \E[>21\E[>161\E[41\E[>91\E[201\E[>31\E[>7h\E[>121\E[[1Q: \
:al=\E[%dL:am:bs:bt=\E[%dZ:bw:cd=\E[J:ce=\E[K:cl=\E?:cm=\EO%+!%+!:co#80:\
:dc=\E[%dP:dl=\E[%dM:do=\ED:ei=\E[41:ho=\E$B:im=\E[4H:\
:lk=%i\E[%d;%%du:uk=%i\E[%d;%%dy:xk:\
:kb=AH:kd=\E[B:kh=\E$A:kl=\E[D:kr=\E[C:ku=\E[A:ks=\E[>13h:ke=\E[>131:\
: l i#24:mi:ms:nd=\E[%dC:pt:se=\E[m:so=\E[2;7m:ue=\E[m:us=\E[4m:up=\EM:\
:vb=\E$E\200\200\200\200\200\200\2 00\200\200\200\200\200\200\2 00\E$P:

Figure 7-3
Entry for the Prime PST 100 Terminal

In Figure 7-3, as in Figure 7-2, the first line is a list of aliases for the Prime PST 100 terminal.
The two-letter capabilities, which begin on the second line, are separated by colons. The end-of-
line symbol is \. ti is a good example of a lengthy capability. \E symbolizes the escape character;
A is the control character.

The Ik and uk entries are particularly tricky. They contain a %d followed by a %%d construct.
The former is a placeholder for the line number to be (unlocked, the latter is a placeholder for
the number-of-lines to be (un)locked. The reason the latter is double-escaped is to pass it through
the cursor positioning routine (which fills in the line number) and have it come out as %d for the
output routine, which fills in the number-of-lines affected.
The last line, showing the vb capability, uses octal numbers in the string.

Alphabetical List of TERMCAP Capabilities
Table 7-2 lists the TERMCAP capabilities alphabetically.

7-13

EMACS Reference Guide

Table 7-2
Alphabetical List of Capabilities

Name Type Description
al String Add blank line
be String Backspace character if not AH
Be Numeric Baud rate above which to ignore im, ic, and dc
Bl Numeric Baud rate above which to ignore al, dl
cd String Clear to end of display
ce String Clear to end of line
cl String Clear screen
cm String Cursor motion
CO Numeric Number of columns on screen
cs String Change scrolling region (VT100)
dc String Delete single character
dl String Delete line
dm String Enter delete mode
ed String End delete mode
ei String End insert mode
ho String Home
ic String Insert character
im String Insert mode
in Boolean Insert mode distinguishes nulls
ip String Insert pad after each character inserted
is String Initialization string
l i Numeric Number of lines on screen
Ik String Lock line
nl String Newline character if not AJ
pc String Pad character if not NULL
tc String Entry for similar terminal
te String Ends programs for cursor motion
ti String Begins programs for cursor motion
ua String Unlock all lines
uk String Unlock line
up String Cursor up
ve String End open/visual mode
vs String Start open/visual mode
xc Boolean Cursor addressing relative to scroll region
xk Boolean Unsafe to move cursor with lines locked

7-14

Language Modes

Introduction
Most programming languages have code formats that depend on indentation or specific column
orientation. EMACS language modes make it easier for you to enter C, COBOL, FORTRAN,
RPG, Common LISP, and PEEL programs in the correct format. While you are using any of these
language modes, you can compile the code in your current buffer without leaving EMACS; if the
program contains errors, EMACS displays diagnostic error messages and the corresponding faulty
code.
For COBOL programs, the language mode changes some EMACS fundamental mode commands
to simplify working with the column-oriented format. C mode changes some fundamental mode
commands, while FORTRAN mode does not. VRPG mode, on the other hand, contains a few
commands written specifically for use with VRPG programs. Common LISP mode contains all of
EMACS fundamental mode functionality plus commands for Common LISP.
This chapter explains how to use the language modes. All coinmands and functions described in
this chapter are found in the EMACS libraries.

Note
To turn on or off any of the language modes in this chapter, be sure to
type I Esc| [x] first, then respond to the minibuffer prompt with the
command name, for example, cW_on.

COBOL Mode
The COBOL language contains strict rules governing the formation of variables, statements, and
paragraphs. COBOL also defines which columns must contain information. Consequently,
COBOL mode changes the definition of certain fundamental commands so that they facilitate
column-oriented entries.

Entering COBOL Mode
You must turn on COBOL mode using the cbl_on command. The cbl_on command specifies that
the CBL compiler is invoked when you issue the compile command, as explained below. The
CBL compiler is the only compiler available from COBOL mode.

8-1

EMACS Reference Guide

▶ cW_on
This command turns on COBOL mode in the current buffer and sets the compile command to
invoke the CBL compiler. After you type the cW_on command, EMACS inserts six spaces at the
beginning of each blank line in the file. It also resets the tabs to either the default COBOL tabs or
to tabs that you have predefined in a library file.

Entering Text in COBOL Mode
Tabs: The default tabs for COBOL mode are set at the following columns:

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 72

If you want different tab stops, you can initialize the my_cobol_tabs$ variable by adding a
statement such as the following to a library file:

(setq my_cobol_tabs$ "8 12 20 28 36 72")

Unlike the other variables you can set, these tab stops will not become active until you enter
COBOL mode. If you want them immediately, you can use one of the normal fundamental mode
tab commands.

Compiling COBOL Programs
You can compile a COBOL program from EMACS using the compile command. Refer to the
Additional Information About Compiling and Debugging Programs section later in this chapter
for instructions about using this command.

Exiting from COBOL Mode
Use the following command to turn off COBOL mode in the current buffer.

^ cbLoff

Additional COBOL Mode Information
When you invoke COBOL mode, EMACS modifies its definition of certain commands. For
example, in fundamental mode, I ctri b 1 moves point backward one character. In COBOL mode,
I ctriB | still moves point backward one character, but if point is at column 7, it is moved to the
last character on the previous line. That is, in COBOL mode, column 7 is considered to be the
beginning of the line, not column 1.
The following keybindings and EMACS extended commands have modified definitions in
COBOL mode.

8-2

Language Modes

? ▶ | c t r i a | c o b o l _ b e g i n _ I i n e
This command moves point to column 7 instead of column 1.

^ | c t r i B | c o b o l _ b a c k _ c h a r
This command moves point back one character.

c t r i D I c o b o l d e l e t e c h a r
Deletes the character on which the cursor is positioned. If the cursor is at the end of a line, it deletes
the carriage return and all leading spaces on the next line. If this newly created line is longer than
72 characters, it is reformatted automatically so that no characters appear after column 72.

c t r i E I c o b o l e n d l i n e
This command moves to the end of the line. If, for some reason, the end of the line is after
column 72, the line is reformatted so that no characters appear after column 72.

c t r i F I c o b o l f o r w a r d c h a r
This command moves point forward one character. If point is at the end of the line, point moves
to column 7 of the next line.

c t r i H I c o b o l r u b o u t c h a r
This command deletes the character to the left of point. If point is in column 7, the initial blanks
at the beginning of the line are removed as well as the carriage return separating the current line
and the previous line. If the resulting line is longer than 72 characters, it is automatically
reformatted.

B a c k s p a c e I c o b o l r u b o u t _ c h a r

This command is identical to I ctrm | described above.

^ | R e t u r n | C O b o I _ W r a p
In COBOL mode, if you type I Return | at the end of a line longer than 72 characters, EMACS
inserts a carriage return. EMACS tries to produce appropriate indentation on the second line. In
most cases, EMACS indents to the same position as the previous line. However, if the previous
line began in column 8, the second line indents to column 12. If the previous line is blank, the
second line indents to column 8.

8-3

EMACS Reference Guide

c t r i K I c o b o l k i l l l i n e
This command kills the current line. If point is at the end of the line, it kills the carriage return
separating the two lines. If the resulting line is more than 72 characters long, the line is
reformatted. Note that if point is around column 72, this command does not allow the kill to
occur. You have to go to the next line and kill it.

^ I c t r i o | c o b o l _ o p e n _ l i n e
This command performs the same action as it does in fundamental mode except that all lines that
are created are padded with spaces to column 7.

^ | c t r i w | c o b o l _ k i I l _ r e g i o n
This command performs the same action as it does in fundamental mode except that it ensures
that the current line is no longer than 72 columns after the region has been killed.

^ | c t r i y | c o b o l _ y a n k _ r e g i o n
This command performs the same action as the fundamental mode command except that it
ensures that text is inserted between columns 7 and 72.

^ | c t r i x 1 1 c t r i h | c o b o l _ b a c k w a r d _ k i l l _ s e n t e n c e
This command kills all text from point back to the end of the previous sentence. Unlike the
fundamental mode command, a period is the only recognized terminator.

c t r i x 1 1 c t r i K | c o b o l b a c k w a r d k i l l j i n e

This command kills all text from point back to the beginning of the current line. It then inserts six
spaces so that point is in column 7.

^ | c t r i x 1 1 c t r i r | c o b o l _ r e a d _ fi l e
This command performs the same action as in fundamental mode except that it inserts six spaces
at the beginning of all blank lines.

^ | c t r i x 1 1 c t r i z | | T) c o b o I _ m a r k _ t o p
This command performs the same action as it does in fundamental mode except that a mark is put
in column 7 rather than column 1.

8-4

Language Modes

^ I c t r i x 1 1 c t r i z | | T | c o b o L m a r k _ b o t t o m

This command performs the same action as it does in fundamental mode except that it ensures
that a mark is put in column 7 if the final character in the region is a carriage return. If this last
character is a carriage return, it pads the line with six spaces.

^ I c t r i x | | " r 1 c o b o L r e p a i n t
This command performs the same function as it does in fundamental mode except that when
point is moved to a line, it is placed in column 7 rather than column 1.

^ I c t r i x | Q J c o b o l _ b a c k _ p a r a
This coinmand moves point backward one paragraph. In COBOL mode, a paragraph is any line
that has text in columns 8 through 11. If the text in these columns is a comment, the line is
skipped.

^ I c t r i x | m c o b o l _ f o r w a r d _ p a r a
This command moves point forward one paragraph, that is, any line that has text in columns 8
through 11. If the text in these columns is a comment, the line is skipped.

^ I E s c 1 1 c t r i H | c o b o l _ r u b o u t _ w o r d
This coinmand deletes the word preceding point. In COBOL mode, a hyphen is considered part of
a word. (In fundamental mode, a hyphen is a word separator.) I ctriH | is usually the Backspace
key.

▶ I E s c | [7] c o b o I _ m o v e _ t o p
Moves point to column 7 of the first line in the buffer.

▶ I E s c | [7] c o b o l _ m o v e _ b o t t o m
This command moves point to the end of the last line in the buffer. If the last line is a blank line,
point is put in column 7.

▶ 1 E s c l [" a ! c o b o l _ b a c k w a r d _ s e n t e n c e
This command moves point backward to the end of the previous COBOL statement. The end of
the statement is defined by a period.

8-5

EMACS Reference Guide

▶ | E s c | | ~ b ~ | c o b o l _ b a c k _ w o r d
This command moves point back one word. Unlike fundamental mode, a hyphen is considered
part of a word in COBOL mode.

▶ I E s c | p 5] c o b o l _ d e l e t e _ w o r d
This command deletes the word following point. If point is at the end of the line, COBOL mode
checks to see if the new line is longer than 72 characters. If it is, it reformats the line.

▶ I E s c l L X I c o b o I _ f o r w a r d _ s e n t e n c e
This command moves point forward to the beginning of the next COBOL statement, placing the
cursor on the character following the first period (.) it encounters.

▶ I E s c | | T 1 c o b o l _ f o r w a r d _ w o r d
This command moves the cursor forward one word. It places the cursor on the first word
separator (space or punctuation mark) following the end of the word. Hyphens are not word
separators in COBOL mode.

▶ 1 e s c | d i g i t I E s c | [g] c o b o l _ g o t o _ l i n e
This command moves point to the line number specified by "digit". If you do not specify a
number, the command moves point to the first line in the buffer. It differs from fundamental
mode in that it ensures that point is not before column 7.

▶ I E s c | [T] c o b o l _ w h i t e _ d e l e t e
This command deletes the space characters that surround point. It ensures that space characters
remain in columns 1 through 6.

P - | s p a c e | c o b o l _ w r a p
This command works in the same manner as inserting a space in fill mode, but it does not affect
text in columns 1 through 6.

The following commands are disabled in COBOL mode:

c t r i x 1 1 c t r i L | l o w e r c a s e _ r e g i o n

c t r i x 1 1 c t r i z 1 1 c t r i a | b a c k w a r d c l a u s e

8-6

Language Modes

▶

▶

▶

▶

▶

| Ctri X || Ctrl Z || Ctri E |

| CtrIX || CtrIZ || Ctri H |

| CtrIX || CtrIZ || Ctrl K |

| CtrIX || CtrIZ IM

| Esc | | L |

1 Esc | | Q |

forward clause

backward kill clause

forward kill clause

center line

lowercase word

fill_para

If a command does not appear in either of the preceding lists, its definition is the same in COBOL
mode and fundamental mode.

CMode
C mode provides an environment that helps the user enter and edit C programs by offering
features that improve the syntax and structure of programs. The syntax aids consist of templates
for a number of standard language structures. The pretty printer checks the program syntax and
produces error messages for incorrect syntax, in addition to formatting the program text to reveal
its structure. You can pretty print all or part of a program. Pretty printing is done automatically
with the templates for some program constructs and by user request for the rest of the program.

Entering C Mode
Use the following command to turn on C mode in the current buffer.

▶ cc_on
The buffer must contain a C source program when you issue this command, or it must be an
empty buffer that you will use to enter new C source code. The accepted suffix for a file or
buffer containing a C program is .C or .CC. You can move freely between buffers where C mode
is turned on or off.
Another way to invoke C mode is to use the file hooks feature that is described in Chapter 6 of
this book. Your user_type$ variable must be set to "programmers", so that the local file hook
automatically activates C language mode when you select a file or buffer with a .C or .CC suffix.
You may set up user-defined keybindings to activate C mode.

8-7

EMACS Reference Guide

When you invoke C mode, it reads in an EMACS speed-type file that contains templates for the C
language forms. You may see a list of the speed-type abbreviations for the C templates, as well as
other speed-type definitions that you may have created, by typing the spd_list_all command. See
Chapter 5 in this book for more information about speed-type commands.
If you are entering a new program into an empty buffer, use the abbreviation /prog to produce a
template that contains global and local declarations. You will notice two comments near the top
of the skeleton C program:

/* GLOBAL DECLARATIONS */

and

/* LOCAL DECLARATIONS */

Do not delete or alter these comments in any way if you intend to use C mode's declaration/
definition management commands. The comments are "landmarks" for C mode to mark locations
in your source code. If your C source code does not contain these comments, it is not possible for
you to use C mode's declaration/ definition commands.
You can set the number of spaces for indenting by using the /for command, which indents the
text two spaces.
You can ask for the whole program or any part of the program text that contains a complete
function to be pretty printed and checked for syntax by marking the appropriate region and using
the pp_region command that invokes the pretty printer. Note that C language mode's pretty
printer operates only within a defined region. If the region does not contain a syntactically self-
contained object, the pretty printer reports a syntax error, because it does not see any portion of
the buffer that lies outside of the region. The pp_region command is bound to I ctrix | [TJ. When
you give this command, the pretty printer invokes the parser and gets back a list of pretty printer
actions sorted by line. It uses this action list to pretty print the text.
For other pretty printing, for example, a single if-else statement, use the I ctrix | |T| |T| keystroke.

Exiting from C Mode
Use the following command to turn off C mode in the current buffer: It is not necessary to turn
off C mode before exiting from EMACS.

▶ cc_off

Commands
There are two general classes of C mode commands:

• Declaration/definition management
• Source/appearance management (pretty printing)

8-8

Language Modes

C mode makes it possible for you to move around in the EMACS buffer to add declarations and
defintions while you are writing the program. The pretty printing feature formats all or part of the
program text to reveal its structure.
The C mode changes certain fundamental mode keybindings, as shown in the following list of
keybindings and commands for C mode. The list includes extended commands that are not bound
to keypaths.

W cc_on
This command turns on the C language mode in the current buffer and sets the compile command to
invoke the C compiler. It checks to see whether the C mode speed-type definitions have been loaded;
if not, an error message appears in the minibuffer. It tells the user to type I ctrix | [Tl for help.

▶ cc_off
This command turns off the C language mode in the current buffer.

^ | c t r i x | [T J p p _ r e g i o n
This command does syntax checking and pretty prints an EMACS region if the region contains a
complete program or the complete body of a C function. If a syntax error is found, EMACS provides
the following error message and leaves the cursor on the line where the syntax error appears.

Syntax error at current cursor

The initial left margin is set at the first non-whitespace character to the right of the cursor.

^ | c t r i x | [J J [T J c c _ p p _ f u n c t i o n $
This command pretty prints a function or definition that is not part of a function body, for
example, a single if-else statement.

^ | c t r i x | Q F] c c _ a d d _ g I o b a I _ d e f $
This command prompts for a global declaration by searching back to the string /* GLOBAL
DECLARATIONS */ and displaying the following placeholders.

<.type.> <.identifier.> ;

^ | c t r i x | [c] c c _ a d d _ l o c a l _ d e f $

This command prompts for a local declaration in the current function. It searches back to the
nearest /* LOCAL DECLARATIONS */ header and displays the following placeholders.

<.type.> <.identifier.> ; 8-9

EMACS Reference Guide

^ I c t r i x | [7 1 c c _ r e t _ f r o m _ d e f $

This command returns the cursor to the place in the text where either the cc_add_local_def$ or
the cc_add_global_def$ command was invoked.

▶ I c t r i x | [T | c c _ h e l p $

This command displays the C help commands and abbreviations on your screen.

!▶ I R e t u r n I c r e t i n d e n t r e l a t i v e

This command inserts a carriage return into the text and moves the cursor to the beginning of a
new line. The new line is indented to the first non-whitespace character of the previous line.

Abbreviations and Templates
One of the most useful features of the C language mode is its ability to create accurate speed-type
templates for the major language forms in C. When you cause a template abbreviation to expand
by typing the abbreviation, followed by a valid separator character (a space or punctuation mark),
the cursor rests on the < symbol at the beginning of the first placeholder in the template. The next
character that you type erases the placeholder. Use the standard EMACS commands, I ctnx | [7]
(forward_place_holder) and I ctrix | |T|(back place holder), to move the cursor to the next or
previous placeholders. If there is no placeholder in the template, the cursor is placed immediately
following the template. If you need help using speed-type templates, see the information about
speed-type templates and placeholders in Chapter 5.
The following list shows the speed-type abbreviations and their templates that are available for
EMACS C mode.

▶ /prog

/* GLOBAL DECLARATIONS */
< . type.> < . ident ifier.> ;

<.type.> <.name.> (<.arg_identifier.>)
<. type.> <.arg_ident ifier.>;
{

/* LOCAL DECLARATIONS */
< . type.> <. ident ifier.>
<.statement.>

}

8-10

Language Modes

▶ /func

<.function_name.> (<.arguments.>)
<.type.> <.argument.>
{

/* LOCAL DECLARATIONS */
< . type .> < . iden t ifier.>
<. statements

}

▶ /if

if (<.expressions)
<.statement.>

▶ /ifelse

if (< .expressions)
<.statement.>

e lse
<.statement.>

▶ /while

while (<.expressions)
<.statement S

▶ /do

do
<.statement S

▶ /for

for (<.init_exprs ; <. conditions ; <. step_expr S)
<.statement S

8-11

EMACS Reference Guide

▶ /switch

switch (<.expressions)
{

case <.constant_exprS
<.statement S

default :
<.statement S

}

▶ /case

case <.const_expressionS
<.statement S

▶ /default

default <.const_expressionS
<.statement S

▶ /struct

s t r u c t < . i d e n t i fi e r S
{

<.types <. identifier S
}

▶ /union

un ion < . iden t i fie rS
{

<. types <• identif ier S
}

▶ /del

<• types <. identif ier S;

8-12

Language Modes

▶ /block

{
<.statement S

}

▶ /body

{
<.statement S

}

▶ / {

{
<.statement S

}

▶ / /

/* <. comments */

Comments are treated as whitespace and ignored by the pretty printer.

Additional C Mode Information

Preprocessor Directives: The C language contains a class of constructs that are directives to
the C language preprocessor. These constructs begin with the # symbol. The C language mode
treats the entire class of preprocessor directives as whitespace and ignores them when the pretty
printer is called.

Configuration: PEEL code for the C language mode is in
EMACS*>EXTENSIONS>CC.EFASL and EMACS*>EXTENSIONS>SOURCES>CC.EM.
Speed-type abbreviations for C mode are in the file EMACS*>EXTENSIONS>SPD>CC.ESPD
and EMACS*>EXTENSIONS>SPD>CC.SPDT. The pathname of the C mode parser that is used
to output pretty print commands is EMACS>LIBRARIES*>CC_LM.RUN.

FORTRAN Mode
The major function of FORTRAN mode is to automatically indent the text that you type,
depending on the character you enter in column 1 of a new line.

8-13

EMACS Reference Guide

FORTRAN mode does not redefine any of the fundamental commands. All fundamental
commands exist in FORTRAN mode and work in the normal way.

Entering FORTRAN Mode
The commands for entering FORTRAN mode are discussed below.

▶ fortran_on
This command turns on FORTRAN mode in the current buffer. If your current file has a .F77
suffix, the following message appears:

FORTRAN mode now on, language F77

If your current file has a .FTN suffix, the message is

FORTRAN mode now on, language FTN

Entering Text in FORTRAN Mode
Tabs: The default tab stops in FORTRAN mode are:

7 13 19 25 31 37 43 49 55 61 67 72

If you want different tab stops, you can initialize the my_fortran_tabs$ variable by adding a
statement such as the following to a library file:

(setq my_fortran_tabs$ "7 17 27 37 47 57 67 72")

Unlike the other variables you can set, these tab stops will not become active until you reenter
FORTRAN mode. If you want them immediately, you can use one of the normal fundamental
mode tab coinmands.

Column 1 Commands: The actions EMACS takes in FORTRAN mode are controlled by
special characters that you type in column 1 of an empty line. If you type any of these characters
in other columns, they are inserted normally. These characters are described below.

• If you type a slash (J) or an asterisk (*) in column 1 on an empty line, EMACS
assumes that you are inserting a comment line. It puts a C in column 1 and indents to
column 3. (This column can be changed. See below.)

• If you type an ampersand (&) in column 1, EMACS inserts a C in column 6 and then
enters spaces so that the current line is indented the same as the previous line. Labels
and intervening comments are ignored. (The character typed in column 6 can be
changed. See below.)

8-14

Language Modes

If you type a number in column 1, EMACS assumes that you are typing a label and
just inserts the number. When you are done typing the label, use the tab or space keys
to move to where you want the text to be entered.

Any other typed character is automatically indented the same as the previous line. For
example, if you type the letter B in column 1 and the previous line had a statement that
began in column 18, EMACS inserts the B in column 18 of the current line. EMACS
ignores intervening comments.

Compiling FORTRAN Programs
You can compile a FORTRAN program from EMACS using the compile command. Either the
F77 compiler or the FTN compiler is invoked, depending on the file suffix. You must use one of
these two suffixes and you must have the correct suffix for the language you are using. If your
program has no suffix, or an incorrect suffix, the compiler is not invoked. Refer to the Additional
Information About Compiling and Debugging Programs section later in this chapter for detailed
instructions about using this compile command.

Exiting from FORTRAN Mode
Use the following command to turn off FORTRAN mode in the current buffer:

▶ fortran_off

Additional FORTRAN Mode Information
FORTRAN mode has some other useful commands. These are discussed below.

▶ fortran_do_toggle
Some users like to add a level of indentation after they type a DO statement. This command
controls that indentation. The first time you type this command, it tells EMACS to indent the text
you type after a DO statement. The second time you type it, it tells EMACS that you no longer
want indentation to occur.
You can also add this statement to a library file by setting the fortran_do$ variable to true.

▶ set_fortran_comment
Normally in FORTRAN mode, EMACS puts a C in column 1 and indents to column 3 after you
type a / or * in column 1.
This command changes the comment indentation to the value you specify. When you type it,
EMACS prompts you for a value.
You can also control comment indentation by setting the fortran_comment_indent$ variable in
a library file.

8-15

EMACS Reference Guide

▶ set_fortran_cont
Normally, EMACS uses a C as the continuation character. If you wish to use a different
character, you can type this command and EMACS will prompt you for the character you want to
use.
You can also specify this character by setting the fortran_continue_char$ variable in a library
file. Note that a source code line ending in column 72 does not generate a continuation line.

RPG Mode
RPG is a structured language that requires adherence to a rigid format for entering source code.
Traditionally, coding a program in VRPG involves using a variety of specification sheets and
placing fields carefully in specific columns, following the formats of the specification sheets. The
lines of code are then keyed into the computer. EMACS RPG mode makes the entry of source
code easier by providing specification sheet templates online.

Entering RPG Mode
Use the following command to enter RPG mode:

▶ vrpg_on
This command turns on RPG mode in the current buffer. It tells EMACS to use the VRPG
compiler whenever you invoke the compile command. As soon as RPG mode is invoked, the
screen is cleared and one of the specification sheet templates is displayed on the first four lines at
the top of the screen. The type of template that is displayed depends on the entry in column 6: if
there is no entry in column 6, EMACS displays the header template with an H in column 6. The
header template is the default template.

Specification Sheet Templates: Figure 8-1 shows the seven RPG-mode specification sheet
templates as they appear on your screen. Each template shows the layout of the current
specification and indicates the names of the fields. The seven templates are as follows:

• Header template displays an H in column 6
• File template displays a F in column 6
• Extension template displays an E in column 6
• Line counter template displays an L in column 6
• Input template displays an I in column 6
• Calculation template displays a C in column 6
• Output template displays an O in column 6

8-16

Language Modes

d a t e fi l e r e q u e s t p r o g r a m i d
l i n e H | | |

Header Template

d e s c l g t h R A
t y p e | e o f m o d e | L m a x l a b e l A s w i t c h e s

l i n e F fi l e | | | b l k r e c | | o f k e y | d e v i c e r e c e x i t U |
- # # # # # # # # - # - # - # # # # # — # - # # # # # # # # # - # # # # # # # - # # - # # — # # # #

File Template

♦entr ies
f r o m t o t a b l e | # / t a b t b l / a r r

l i n e E | | fi l e fi l e a r r a y | | I t n a m e I t c o m m e n t
- # # — # # # # # # # # # # # # # # # # # # — - # - # # # # - # -

Extension Template

o v e r fl o w
FL |

l ine L fi le Ins | | OL comment
— #

Line Counter Template

C Z D C Z D C Z D L 1 - L 9 M 1 - M 9
s e q i n d I I I I I

line I file | | pos N| pos N| pos N| frm to field | | indicat
#####-########—#-## #-# #-# #-#-# ####-######—##—##—##

Input Template

A N / O R d e c
I o p e r s i z e | H L E

l ine C | i nd ica t fac to r l | f ac to r2 resu l t | | i nd ie comment
- # # - # # - # # - # # # # # # # # # # # # # — - # - # # — #

Calculation Template

t y p e s p a c e e d i t c o d e
A N / O R | | | e n d

l i n e 0 fi l e | | F | s k i p i n d i e fi e l d | p o s e d i t w o r d

Output Template

Figure 8-1
Specification Templates

8-17

EMACS Reference Guide

Modifying Template Appearance: Instead of using the fully formatted template, many
experienced programmers may prefer a simpler template that labels only columns. To select this
version, use the rpg_config command, which is explained in a later section. The abbreviated
template (ruler template) looks like this:

1 2 3 4 5 6 7 8
12345678901234567890123456789012345678901234567890123456789012345678901234567890

Ruler Template

Entering Text in RPG Mode
In RPG mode, the screen displays a shadow cursor, indicated by a caret (A), in addition to the text
cursor. The shadow cursor is located on the line immediately under the template. It moves as the
cursor moves, allowing you to determine at a glance in which column you are making an entry.

Most of the fundamental mode EMACS commands, such as I ctri f L are not changed in RPG
mode. However, three keypaths — I ctri b L I Esc | [b], and I Backspace [— move the cursor back only
as far as the first column in the present line. Use any logical sequence of EMACS commands
(such as I ctriz | followed by I ctriE p to move to column 80 of the previous line.
RPG mode provides two special keybindings that move the cursor from field to field. They are
the I Tab | key and the 1 Return | key.

w - L I _ _ J r p g _ t a b $

Pressing the I Tab 1 key moves the text cursor to the next field of the current specification sheet.
For example, if you are at column 15 of an an input (I) specification, pressing I Tab | puts the text
cursor at column 19. Column 19 is the first column in the next field, which is for record
indicators.

The I Tab | key moves forward only to fields on the current line; to get to the next line, you must
use I ctriN | or the I Return | key.

R e t u r n | r p g _ c r $

Pressing I Return \ inserts a blank line between the current line and the next line and puts the text
cursor in column 6. This feature is convenient both for writing new programs and for editing old
ones. However, you must be careful if you are editing a program. If you press I Return | while the
cursor is over text, two things happen:

• The rest of the current line is placed on a new line, starting at column 1.
• The cursor moves to column 6.

8-18

Language Modes

Compiling VRPG Programs
You can compile a VRPG program from EMACS, using the compile coinmand. All of the
standard command line options for compiling a VRPG program are supported, but they must be
entered in uppercase. If there are errors in the program, EMACS provides a message at the bottom
of the screen, indicating the number of errors, the command to view the next error, and the
command to view the previous error. For information about compiling, see the Additional
Information About Compiling and Debugging Programs section at the end of this chapter.

Exiting from RPG Mode
Use the vrpg_off command to turn off RPG mode in the current buffer.

Additional RPG Mode Information
RPG mode provides its own set of EMACS commands and configuration variables. As with other
EMACS commands, you can execute these commands in any of the following ways:

• Enter the keybinding, if the command is bound to a keypath.
Enter the extended command, after keying I Escl [__. Respond to the displayed query
Command: with the name of the function, such as rpg_template$.

•

• Use a Prime EMACS Extension Language (PEEL) macro. Using PEEL statements will
probably be most useful to you as a way to put commands and variables into your user
library.

This section lists RPG mode commands, grouped according to the following functional
categories:

• Configuring RPG mode
• Getting help
• Modifying the template
• RPG library files

For each command, the keybindings are listed first and the extended commands are listed second.
The word none indicates that there are no set keybindings.

Configuring RPG Mode: The rpg_config command provides a series of options to configure
RPG mode.

▶ rpg_config
The options provided by this command select the terminal screen appearance and the compiler.
Some of these options can be overridden later by the other RPG mode commands.

8-19

EMACS Reference Guide

Invoking this command provides a series of questions in the minibuffer. The first display looks
like this:

Enable automatic display of template (current value -YES):
CR - no change;(Y YES T TRUE) - set true; (N NO F FALSE) - set false;

The display for each question shows the current value of the variable and the choices of
responses. You can either retain the current value or change it. For example, if you enter Y or
press I Return | in response to the query above, the appropriate template is automatically displayed.
Figure 8-2 diagrams the rpg_config facility selections, with the default values highlighted. You
can override some of the individual configuration conditions by using other RPG mode
commands. For example, if you have shut off the automatic display of templates, use I Esc| fxl
I ctric | to view the current template. Then, to delete the template, invoke 1 Esc| 1 ctriK |.

Getting Help: The top line of the minibuffer contains rpg and the word overlay, indicating
overlay mode. The minibuffer can also display help messages. If you want to see them, you must
select this option when you configure RPG mode, as explained in the next section. The help
messages are either in a full or in an abbreviated form. The full form shows:

• The position of the cursor
• Descriptive information for that column or field

For example, if the cursor is in column 12 of the calculation specification, the full form help
message looks like this:

12 col 12 Indicator Specifier-N for not Indicator

The abbreviated (partial) form of the same help message displays the current column number at
the leftmost side of the minibuffer:

12

There are two commands that override configuration directives and give you access to the
rpg_config facility help messages. The choice depends upon how you configured RPG mode.

^ [1 _ _ D [h] r p g _ f u l l _ h e l p $
If you configured the partial help message, this command provides a full help message that is
based on the current specification sheet and column number. This command does not override the
rpg_config setting for displaying a help message.

▶ rpg_help$
If you did not configure a help display, this command gives a partial help message in the
minibuffer.

8-20

Language Modes

N

indicates default

Figure 8-2
The RPG Config Selections

8-21

EMACS Reference Guide

Modifying the Template: Two more coinmands override settings made through the rpg_config
facility. The first makes an RPG template appear on the screen; the second removes the template from
the screen.

rpg_full_help$

rpg_template$
This command displays an RPG template based on the specification form specifier in the current
line. If there is no card specifier in die current line, I Escl I ctric | first prompts you to enter one,
and then displays the template.
This command is useful if you have shut off the automatic display of templates with the rpg_config
facility but still want to see them occasionally.

▶ 1 Esc | L_U

▶ | Esc | | Ctri C |

Esc Ctrl K

This command removes the RPG templates from your screen. It overrides the rpg_config setting
for displaying the templates. After you enter this command, the minibuffer displays the following
message:
Use rpg_tempiate$ to restore the template window.

RPG Library Files: EMACS RPG mode lets you set values in a library file to establish
keybindings and performance. You may find it convenient to use the statement that enables the
file hooks mechanism:

setq user_type$ 'programmer$

This command should be the last command in your library. For more information about setting
keybindings, library files, and file hooks, see Chapter 6.
You can store two types of variables in your user library:

• Keybinding variables
• rpg_config variables

Each type is discussed in this section.
The first type of RPG variable for your user library is the keybinding variable. Normally, RPG
mode uses the following four bindings:

Keypath Extended Command Var iab le
r p g _ t a b $ r p g _ _ t a b _ k e y $
rpg_ful l_help$ rpg_help_key$
rpg_template$ rpg_plate_key$
rpg_kill_template$ rpg_unplate_key$

| Ctrl 1 | or I Tab |
| Esc | | H |

| Esc | | Ctrl C |

| Esc | | Ctrl K |

8-22

Language Modes

If you are not using the Standard User Interface (SUI), you may bind these settings to function
keys. In SUI, these commands are already automatically bound to the terminal's function keys.
To rebind a keypath, put the setq statement for the new keypath in your library. The following is an
example of binding the rpg_template$ command to a function key whose keypath is Esc [4 z.

(setq rpg_template$,,A[[4z")

This statement can go anywhere in a library file.
The second type of RPG variable for your user library is the rpg_config variable. When you use
the rpg_config facility, EMACS sets a variable to either true or false, depending on your answer.
If you always want RPG mode to perform in a way different from the default, you can place
these same variables in a library startup file.
If you configure a default, you can still change the way in which RPG mode performs in the
current session by using I Esc | |~xl rpg_config. However, any changes made will only be used in
the current editing session. At your next editing session, your settings will again be used. You can
place these statements anywhere in a library file.
Table 8-1 shows the RPG mode variables, their default values, and a description of the action
controlled by the variable.

Table 8-1
RPG Mode Variables

Variable Default Meaning
rpg_split_window$ true This variable indicates whether the mode will display informa

tion in a window at the top of the screen. The kind of informa
tion is described by the rpg_full_template$ variable. If this
variable is false, EMACS disregards the rpg_full_template$
variable.

rpg_full_template$ true This variable indicates the kind of information that will appear
in the top window. If this variable is set to true, EMACS places
a template in the top window. This template changes according
to the specification form. If it is set to false, only a ruler will
appear in the window.

rpg_show_shadow$ true This variable controls the use of the shadow cursor, which
shows the current column position. If this variable is set to
false, EMACS does not use the shadow cursor.

rpg_help_sw$ true This variable indicates whether EMACS will show help infor
mation in the minibuffer area. The kind of information is
defined by the rpg_full_help_sw$ variable. If this variable is
set to false, EMACS ignores the rpg_full_nelp_sw$ variable.

rpg_full_help_sw$ true This variable tells EMACS what kind of help information to
print Help information is only printed when rpg_help_sw$ is
set to true. If this variable is set to true, EMACS displays the
current column, the limits of the current field, and a brief
description of the information you can type in the field. This
information depends on the specification form. If this variable
is set to false, EMACS prints only the current column number.

8-23

liMACS Reference Guide

LISP Mode
LISP mode is one of the three LISP-related language modes provided by EMACS. The other two
are Common LISP mode and Listener mode. LISP mode is designed for use with PEEL, Prime's
EMACS Extension Language, with which you can write new EMACS commands, called
extended commands. See The EMACS Extension Writing Guide. Although PEEL resembles LISP
in syntax and contains many of LISP's basic list-processing functions, it is not equivalent to
PRIME Common LISP, and LISP mode is not equivalent to Common LISP mode. Common LISP
mode contains all of LISP mode's functionality.

Entering LISP Mode
The following command turns on LISP mode in the current buffer:

▶ lisp_on
Once LISP mode is invoked, lisp appears on the EMACS status line.

Exiting from LISP Mode
The following command turns off LISP mode in the current buffer:

▶ lisp_off

Additional LISP Mode Information
The following keybindings and EMACS extended commands are effective only in LISP and
Common LISP modes:

p > 1 E s c 1 1 c t r i b | b a l b a k
This command moves the cursor, or point, backward to the opening parenthesis of the current
level of nesting. If point is at a closing parenthesis, EMACS moves point to the corresponding
opening parenthesis. If point is between forms, EMACS moves point back to the last closing
parenthesis and then back again to the corresponding opening parenthesis.

E s c l I c t r i F I b a l f o r

This command moves point forward to the closing parenthesis of the current level of nesting. If
point is at an opening parenthesis, EMACS moves point to the corresponding closing parenthesis.
If point is between forms, EMACS moves point forward to the next opening parenthesis and then
forward again to the corresponding closing parenthesis.

8-24

Language Modes

^) c l o s e _ p a r e n
This command moves point briefly to the opening parenthesis that corresponds to the closing
parenthesis just typed. After a pause, EMACS returns point to the position immediately following
the closing parenthesis just typed. The pause at the opening parenthesis usually lasts 750
milliseconds. If you want to change the default duration of the pause, set the EMACS variable
Hsp.paren_time to the new value. A value of 0 turns off close_paren.

^ | R e t u r n 1 H s p _ C r

This command pretty prints your code as you type it. Pretty-printing arranges the code so that
indentation is consistent and the structure of expressions is clear.

^ p E s c l [o l l i s p _ p p _ c o m m a n d
This command pretty prints the current form, starting at point,

▶ l ~ E s c ~ l | T | l i s p _ c o m m e n t
This command moves point to the LISP comment column, usually column 40, and places a
semicolon (;) there. If you want to change the default LISP comment column, set the EMACS
variable lisp_comment_column to the new value.

^ | ~ E s c 1 | T | l i s p _ i n d e n t
This command indents point to the proper position for the current LISP form.

^ 1 " e s c ~ 1 I c t r i a [b e g i n _ d e f u n
This command moves point backward to the last opening parenthesis against the left margin.

^ l ~ E s c ~ | 1 c t r i E | e n d _ d e f u n
This command moves point forward to the closing parenthesis that corresponds to the last
opening parenthesis against the left margin.

^ | e s c | | c t r i r | m o v e _ d e f u n _ t o _ s c r e e n _ t o p
This coinmand moves the form beginning with the last opening parenthesis against the left
margin to the top of the screen.

8-25

EMACS Reference Guide

▶ 1 E s c j [E Q m a r k _ d e f u n
This command marks the region between the last opening parenthesis against the left margin and
the closing parenthesis that corresponds to it and moves point just to the right of this closing
parenthesis. This is the easiest way to mark a function before sending it to the Listener buffer for
evaluation (see below). For larger pieces of code, you can also use the standard way of marking a
region with I ctri @ | and point.

Common LISP Mode
Common LISP mode is one of the three LISP-related language modes provided by EMACS. It is
designed for use with PRIME Common LISP. Common LISP mode contains all of LISP mode's
editing and formatting functionality, as well as the ability to send all or selected portions of your
source file to the Listener buffer for interpretation or compilation by PRIME Common LISP.

Entering Common LISP Mode
The following command turns on PRIME Common LISP mode in the current buffer:

▶ cl_on
This command turns on both Common LISP and LISP modes in the current buffer. Once
Common LISP mode is invoked, common, lisp, lisp appears on the EMACS status line.

Exiting From Common LISP Mode
The following command turns off PRIME Common LISP mode in the current buffer:

▶ cl_off

Additional PRIME Common LISP Mode Information
In addition to the LISP mode functionality described above, the following keybindings and
extended commands are effective only in Common LISP mode.

^) c l _ c k > s e _ p a r e n
This command moves point briefly to the opening parenthesis that corresponds to the closing
parenthesis just typed. After a pause, EMACS returns point to the position immediately following
the closing parenthesis just typed. The pause at the opening parenthesis usually lasts 750
milliseconds. If you want to change the default duration of the pause, set the EMACS variable
lisp.paren_time to the new value. A value of 0 turns off cl_close_paren.

8-26

Language Modes

R e t u r n | C l C r

This command pretty prints your code as you type it. Pretty printing arranges the code so that
indentation is consistent and the structure of expressions is clear.

▶ cljistener
This command replaces the current buffer with a buffer named [listener]; listener, lisp
appears on the EMACS status line. In the listener buffer, you have a right angle-bracket (>)
prompt and can enter commands at PRIME Common LISP top level (not EMACS Common LISP
mode). You can split the screen so that your source text appears in one window and the Listener
buffer in the other. Your entire source file, or selected portions of it, can be passed to the Listener
buffer for interpretation (evaluation) or compilation by PRIME Common LISP. The Listener
buffer can be edited and saved in a file as a record of your LISP session.

^ I E s c | m c l _ s e n d _ r e g i o n
This command sends the current region to the Listener buffer for interpretation (evaluation) by
PRIME Common LISP. After you issue this command, working appears in the EMACS
minibuffer area. If you are using only one window, EMACS splits the screen; your source code is
in the top window, and the Listener buffer appears in the bottom window. The cursor moves to
the bottom window, and the current region is evaluated there by PRIME Common LISP. The
right angle-bracket (>) prompt confirms that you can enter commands at PRIME Common LISP
top level.

▶ I E s c | m c l _ c o m p H e _ r e g i o n
This command sends the current region to the Listener buffer for compilation by PRIME
Common LISP. The screen behavior associated with the Listener buffer is the same as that
described under the function cl_send_region.

▶ I E s c | [m] c l _ m a c r o e x p a n d _ r e g i o n
This command sends the current region to the Listener buffer for macro expansion by PRIME
Common LISP. The screen behavior associated with the Listener buffer is the same as that
described under the function cl_send_region.

^ U ^] [T | c l _ s e n d _ fi l e
This command saves the file in the current buffer and sends it to the Listener buffer for
evaluation by PRIME Common LISP. An acknowledgement message shows the pathname of the
loaded file. The screen behavior associated with the Listener buffer is the same as that described
under the function cl_send_region.

8-27

EMACS Reference Guide

▶ I E s c | [7] c l _ d e s c r i b e _ c u r r e n t _ s v m b o l
This command uses Common LISP's describe function to print information about the current
symbol.

^ I c t r i x | \ J] c l j i e l p
This command displays a summary of Common LISP mode's special keybindings and their
meanings.

Listener Mode
Listener mode is one of the three LISP-related language modes provided by EMACS. Listener
mode is usable only in the Listener buffer. It gives you direct access to PRIME Common LISP
without leaving EMACS. You can split the screen so that your source text appears in one window
and the Listener buffer in the other. The Listener buffer can be edited and saved in a file as a
record of your LISP session.

Entering Listener Mode
To enter the Listener buffer and invoke Listener mode from EMACS, issue the cljistener
command, described in the section Common LISP Mode above. Listener mode can be invoked
only in a special buffer named [listener]. Once Listener mode is invoked, listener, lisp
appears on the EMACS status line. In the Listener buffer, the right-angle bracket (>) prompt
confirms that you can enter commands at PRIME Common LISP top level.

Exiting from Listener Mode
You can change back and forth from the Listener buffer to other buffers with the standard
EMACS commands. You may exit from EMACS when you are in the Listener buffer.

Additional Listener Mode Information
Listener mode includes all of LISP mode's functionality. However, because a function's opening
parenthesis is no longer against the left margin in the Listener buffer, the following LISP mode
keybindings and extended commands, all relating to cursor movement and region marking, are
not recommended for use in Listener mode:

I Esc 11 ctri a | begin_defun
I Esc 11 ctri e | end_defun
I Esc| | ctrm I move_defun_to_screen_top
I Esc 11 ctrm I mark_defun

8-28

Language Modes

The following keybindings and extended commands from Common LISP mode are available in
Listener mode:

1 Esc | | E | cl_send_region
1 Esc | | Z | cl_compile_region
| Esc || M| cl_macroexpand_region
l EscM- l cl_describe_current_symbolm cl_close_paren

In addition, Listener mode provides the following special keybindings and extended commands:

^ | R e t u r n | c l _ s e n d _ l i s p _ l i n e
This command sends blocked input to PRIME Common LISP for evaluation. EMACS maintains
a pointer to the start of an area of blocked input. A carriage return sends the blocked input and
updates the pointer. Input is sent line by line and can be edited only before it is sent If you
accidentally corrupt the pointer, EMACS resets it and displays an error message.

^ | c t r i x | [7] c l _ l i s t e n e r _ h e l p
This command displays a summary of Listener mode's special key bindings and their meanings.

Additional Information About
Compiling and Debugging Programs
If you are writing functions in PEEL, Prime's EMACS Extension Language, and have not
invoked a language mode, you can compile your functions from EMACS using the PI function.
(See the EMACS Extension Writing Guide for more information.)
You can compile or interpret all or part of a Common LISP program from Common LISP mode.
See the previous description of Command LISP mode for details.
If you are creating COBOL, C, FORTRAN, or RPG programs, you can compile the program
from EMACS with the compile command described below.

▶ compile
This coinmand compiles the source code in the current buffer if you have invoked a language
mode in this buffer. To include the compiler options on the compile command line, you must type
them in uppercase letters. An example of a compile command line for COBOL mode that shows
the compiler options on the command line is shown below.

compile "LISTING "DEBUG

8-29

EMACS Reference Guide

After you issue this coinmand, EMACS checks to make sure that you have saved the current
buffer text. If you have not, EMACS saves it for you. If there is more than one window on the
screen, EMACS removes the other windows. It then tells PRIMOS to compile the current buffer
as a phantom process. After the phantom executes, EMACS displays the message produced by the
language compiler in the minibuffer. For example, for the CBL compiler, this message might be:

No errors in compilation

Compile Command Variables
The compile command has a number of internal variables that let you control how it works.

▶ l m _ l i s t _ p a t h $ s t r i n g * ^ \
This string variable defines the directory to which the compiler should write the listing file. It
always has a value that is set either by the user or by default. If you do not set this variable,
EMACS writes the file to your current directory.

▶ lm_bin_path$ string
This string variable defines the directory to which the compiler should write the binary (object)
file. If you do not set this variable, EMACS writes the file to your current directory. *^^

▶ lm_max_num_errors$ integer
This integer variable specifies the maximum number of compiler error diagnostics and warnings
that EMACS should issue. The default is 100, which is the maximum acceptable value.

Every diagnostic adds time to the execution of the compile command. Therefore, assigning a
smal le r va lue to th is var iab le causes fas ter compi la t ion . *^V

▶ lm_max_error_size$ integer
This integer variable tells EMACS what the maximum size of the error window should be.
Smaller error messages are placed in smaller windows. If the error message is larger than the
maximum window size of 10 lines, EMACS displays only the top part of the message.

▶ lm_forward_error_key$ keypath
This string variable indicates what keypath should be used to invoke lm_next_error$. The
default is I ctri x | [nJ

8-30

Language Modes

▶ lm_prev_error_key$ keypath
This string variable indicates what keypath should be used to invoke lm_prev_error$. The
default is I ctrix | [pj
The following string variables define which compiler options should be used when the program is
compiled. Prime supports all regular compiler options for each language. If a variable is not set to
a value, no options are used.

▶ cW_compiIe_options$ options

▶ cc_compile_options$ options

▶ ftn_compile_options$ options

▶ f77_compile_options$ options

▶ vrpg_compile_options$ options

Initializing the Variables
You can initialize the compile coinmand variables in two ways. The next section discusses each
method.

• Make them part of a library file.
• Set them manually with the I esc| [xl command.

You can initialize the variables in a library file so that you do not have to reset them for each
EMACS session. Use the setq extension language statement. For example, to initialize the
lm_max_nurn_errors$ integer variable to 40, you would include the following statement in your
library file:

(setq lm_max_num_errors$ 40)

Similarly, to initialize the lm_bin_path$ string variable to the value "*>bin", use this statement:

(setq lm_bin_path$ "*>binn)

An example of how to set CBL compiler options for listing and debug in a library file is shown
below:

(setq cbl_compile_options$ "-LISTING -DEBUG")

8-31

EMACS Reference Guide

Note
The variable name must be in lowercase, and the compiler options
must be in uppercase letters.

To set these variables manually, you can use the following commands. EMACS issues
appropriate prompts. Again, be sure to type the compiler options in uppercase.

set_lm_list_path$
set_lm_bin_path$
set_cN_compile$
set_cc_compile$
set_ftn_compile$
set_f77_compile$
set_vrpg_compile$
set_max_num_errors$
set_lm_max_error_size$

Debugging Programs
When a language mode is in effect and you have issued the compile command, EMACS provides
a message at the bottom of the screen, indicating the number of errors, the command to view the
next error, and the command to view the previous error. Either of the following commands
divides the screen and displays one or more errors in the program. The specific commands for
viewing the error(s) are:

^ | c t r i x | [W \ I m _ n e x t _ e r r o r $
This command divides the screen and moves the cursor to the next error or warning in the source
code. It prints the error or warning in the top screen buffer. You may alter the code as it appears
in the lower screen and recompile. If you type this command after the last error message, EMACS
informs you and displays only the source code. To change the bindings of this command, use the
lm_forward_error_key$ command discussed above.

^ | c t r i x | [p] l m _ p r e v _ e r r o r $
This command divides the screen and moves the cursor to the previous error or warning in the
source code. It prints the error or warning in the top screen buffer. You may alter the code as it
appears in the lower screen and recompile the program. If you type this command when the
cursor is placed before the first error message EMACS tells you this and displays only the source
code. To change the bindings of this command, use the lm_prev_error_key$ command
discussed above.

8-32

Appendices

Alphabetical Summary
of Commands

This appendix lists all of the EMACS commands alphabetically by keybinding. Each command is
followed by its corresponding function name and a brief description.

Comnua n d F u n c t i o n N a m e
help on tap
mark
begin line

back char

reexecute

delete char
end line
forward char

abort command
abort minibuffer

rubout char
type tab
kill line
refresh
cr

wrap

exit_minibuffer

next_line_command
open line

break

Description
1 Ctrl_ Accesses help function.
| Ctrl® Sets mark at cursor.
| Ctri A Moves cursor to beginning of

line.
| CtriB Moves cursor back one

character.
| CtrIC Reexecutes most recent

command.
| CtrlD Deletes character after point.
| CtriE Moves cursor to end of line.
| Ctrl F Moves cursor forward one

character.
| CtriG Aborts most recent command.
| CtriG Aborts minibuffer when in

minibuffer mode.
| CtriH Deletes preceding character.
| Ctrl) Moves cursor to next tab stop.
| CtriK Kills current line.
| Ctrl L Refreshes screen.
| Return Inserts carriage return just

before current cursor.
| Return Inserts carriage return in fill

mode.
| Return Exits minibuffer when in

minibuffer mode.
| CtriN Moves cursor to next line.
| CtriO Opens line without moving the

cursor.
| Ctrl P j Prompts before breaking to

PRIMOS command level.

A-1

EMACS Reference Guide

Command
CtrlO.

| CtriR |

| CtrlS |

| Ctrl T |

| CtrlU |
| CtrlU |

| CtriU |

| Ctri V |

| Ctrl W |

| Ctri X |

| CtrIX |

| CtrIX |

| CtrIX |

| CtrIX |

| Ctri X |

| Ctri X |

| Ctri X |

| CtrIX |

| Ctrl X |

| Ctrl X |

| CtrIX |

| CtrIX |
| Ctri X I
| CtrIX |

| CtrIX |

| Ctri X |

| CtrIX |

| CtrIX |

| Ctrl @ |

| Ctrl B |

| Ctri C |
| CtriE |

| Ctrl F |

| CtriG |

| CtriH |

| Ctrll |

| CtriK |

| CtriL |

| Return |

| CtrlO |

| CtriR |

| CtrlS |
| Ctrl T |

| CtriU |

| Ctrl V |

| Ctrl W |

| CtrIX |

| CtrIZ |

CtrIX | | Ctrl V

Ctrl A

| CtrIX | | CtrIZ | | Ctrl E |

Function Name Description
_̂quote_command Inserts a nonalphabetic

character into your text.
reverse_search_command Searches backward.
As_forward_search_command Searches forward (stops output

on some terminals).
twiddle Transposes two characters

preceding cursor.
multiplier Multiplies prefix count.

Moves cursor back one position
of mark on ring of marks.

view_off Turns view mode off.
next_page Scrolls screen display forward

18 lines.
kill_region Moves region between mark

and cursor to kill ring.
list_buffers Lists all active buffers.
quit Leaves EMACS.
primos_command Executes a PRIMOS command.
find_file Finds a file and reads it into

buffer named filename.
ignore_prefix Aborts the command.
backward_kill_sentence Kills a sentence from cursor

back to beginning.
insert_tab Moves cursor and text to next

tab position.
backward_kill_line Kills from cursor to beginning

of line.
lowercase_region Converts region to lowercase.
cret_indent_relative Moves cursor to new line that

is indented the same as
previous line.

delete_blank_lines Deletes blank lines immediately
above and below cursor.

read_file Reads a file into current buffer.
save_file Saves a file.
toggle_redisplay Toggles the redisplay mode.
uppercasejregion Converts region to uppercase.
view_file Lets a user look at a file.
mod_write_file Prompts you before writing

buffer to file.
exchange_mark Exchanges mark and cursor.
backward_clause Moves cursor backward one

clause.
forward_clause Moves point forward one

clause.

A-2

Alphabetical Summary of Commands

Command
| CtrIX | | CtrIZ | | Ctrl F |

| CtrIX |

| CtrIX |

| CtrIX |

| Ctri X |

| CtrIX |

| CtrIX |
| CtrIX |

| CtrIX |

| Ctri X |

| CtrIX |

| CtrIX |

| CtrIX |

| CtrIX |

| Ctrl X |

| CtrIX |

| CtrIX |

| CtrIX |

| CtrIX |

| CtrIX |

| CtrIX |

| CtrIX |

| Ctri X |

| CtrIX |

| CtrIX |

| CtrIX |

| CtrIX |

| CtrIX |

CtrIZ CtriG

| CtrIZ | | CtriH
| CtrIZ | | CtriK
| CtrIZ | | CtriY

rc^z~i_n
rcirrnin
| CtrIZ | fAl

ctriz i rn

I CtrIZ jfjj]

I CtrIZ Ifsl
| CtrIZ | | CtrlV

m
r a
r a

□

r a

r a

rr
H
r a

Q
r a

E

IT] | Return |

Function Name
get_filename

ignore_prefix
backward_kill_clause
forward_kill_clause
yank_kill_text

mark_top
mark_bottom
append_to_file

take_right_margin

insert_buf

view_kill_ring
prepend_to_file

center_line
view_lines

collect_macro
finish_macro
spd_add_region

take_left_margin

mod_one_window

mod_split_window

mod_split_window_stay

select_any_window

back_place_holder

tell_position
forward_place_holder

append_to_buf

mod select buf

Description
Displays pathname of current

buffer.
Aborts most recent command.
Kills backward one clause.
Kills forward one clause.
Inserts text saved by

view_kill_ring.
Marks top of buffer.
Marks bottom of buffer.
Appends current region to a

file.
Sets right margin from

current cursor position.
Column 10 is cutoff point.

Inserts specified buffer at
cursor.

Displays contents of kill ring.
Prepends current region to a

file.
Centers current line.
Views lines toggled off with

toggle_redisplay.
Starts collecting macro.
Stops collecting macro.
Defines a region as expansion

of speed-type abbreviation.
Sets left fill margin to column

containing the cursor.
Transforms a split screen into

one.
Divides screen horizontally into

two screens.
Splits screen; keeps cursor in

current one.
Cycles cursor through all

windows.
Moves to previous speed-type

place holder.
Gives line and cursor position.
Moves to next speed-type

placeholder.
Appends current region to a

buffer.
Moves you to the specified

buffer.
Returns you to previous buffer.

A-3

EMACS Reference Guide

Command Function Name
| Ctrl X | | D | explore

1 Ctrl X | | E | execute macro

1 Ctrl X | | F | set right margin

| Ctrl X | | H | mark_whole
| Ctri X | | 1 | insert file

| Ctri X | | O | other window

1 Ctrl X | | P | prepend to buf

| Ctrl X | | Q | quote command

| Ctri X | | R | repaint

| Ctri X | | S | save file
1 Ctrl X | | V | scroll other backward

1 Ctrl X | | [1 backward_para

1 Ctrl X | |] | forward_para

1 Ctrl X | | - | spd unexpand

1 Ctrl X | | { | horiz left

| Ctri X | | } | horiz right

| CtriY | yank_region
| CtrIZ | prev_line_command
| Esc | | Ctrl D | kill_rest_of_buffer

| Esc | | Ctrl G | ignore_prefix
| Esc | | Ctrl H | rubout_word
| Esc | | Ctri 1 | indent_to_fill_prefix
| Esc | | Ctrl 0 | split_line

| Esc | | Ctrl V | scroll_other_forward
| Esc | | Ctri Y |

| Esc | | Esc |

yank_minibuffer

pl_minibuffer

Description
Allows user to explore a

directory.
Executes current keyboard

macro.
Sets right margin to specified

value.
Marks whole buffer as region.
Inserts file into buffer at

cursor.
Moves cursor between current

window and previous
window.

Prepends current region to a
buffer.

Inserts a nonalphabetic
character into your text.

Moves cursor to first column
of first line on screen.

Saves file.
Scrolls other window

backward.
Moves cursor back to the

beginning of the paragraph.
Moves cursor forward to the

end of the paragraph.
Removes speed-type expansion

from current buffer.
Shifts the current window left

40 spaces.
Shifts the current window right

40 spaces.
Restores the last text deleted.
Moves cursor up one line.
Kills from cursor to end of

buffer.
Aborts most recent command.
Deletes word before cursor.
Moves line to left margin.
Breaks line at point and indents

next line at same column.
Scrolls other window forward.
Inserts the response to the

previous minibuffer prompt
into your current buffer.

Enables PL minibuffer.

A-4

Alphabetical Summary of Commands

Command Function Name Description
| Esc | |SPACE| leave_one_white Deletes all but one space

around cursor.
| Esc | | % | query_replace Executes query_replace

function.n^in esc_minus Prefix minus.
| Esc | | 0 | esc_digit Prefix digit.
1 Esc | | 1 | esc_digit Prefix digit.
1 Esc | | 2 | esc_digit Prefix digit.
| Esc | | 3 | esc_digit Prefix digit.
1 Esc | | 4 | esc_digit Prefix digit.
| Esc | | 5 | esc_digit Prefix digit.
1 Esc | | 6 | esc_digit Prefix digit.
1 Esc | | 7 | esc_digit Prefix digit.
1 Esc | | 8 | esc_digit Prefix digit.
1 Esc | | 9 | esc_digit Prefix digit.
[EscJLd move_top Moves cursor to top of buffer.
1 Esc | | > 1 move_bottom Moves cursor to bottom of

buffer.
1 Esc | [?J explain_key Alternate method of invoking

the C help option.
| Esc | |@| mark_end_of_word Marks end of current word.
| Esc | | A | backward_sentence Moves cursor to the beginning

of the sentence.
| Esc | | B | back_word Moves cursor back to the

beginning of a word.
| Esc | | C | capinitial Capitalizes current word.
1 Esc | | D | delete_word Deletes a word.
| Esc | | E | forward_sentence Moves cursor to the end of the

sentence.
| Esc | | F | forward_word Moves cursor forward one

word.
| Esc | | G | goto_line Moves cursor to specified line.
| Esc | | H | mark_para Marks a paragraph.
| Esc | | 1 | indent_relative Indents current line relative to

previous one.
| Esc | | K | forward_kill_sentence Kills a sentence forward from

point
1 Esc | | L | lowercase_word Converts word to lowercase.
| Esc | | M | back_to_nonwhite Moves cursor to first nonblank

character on line.
| Esc | | N | next_buf Replaces current buffer with

the next buffer.
| Esc | | P | prev_buf Replaces current buffer with

the previous buffer.
| Esc | | Q | fill_para Fills paragraph according to set

columns.

A-5

EMACS Reference Guide

Command
| Esc | | R |

| Esc| ps]

|Esc|[T]

| Esc| |Tj]
| Esc | fy]

| Esc| fW]
fiicirxi
H3H

rE3 |T |
| Esc IQ
[jEscJQ
Extended (

|Esc|[__J

|Esc|[x]
|Esc|[T|
|esc|[x]

1 Esc| fx]

1 Esc| [xl
lEscirx]

|Esc|[Y|

|Esc|[x]

|Esc|[x]

| Esc |H

|Esc|(T|

1 Esc| [X]

Function Name
reverse_search_command

forward_search_command

transpose_word

uppercase_word
back_page

copy_region
extend_command
yank_replace

white_delete
unmodify
mergejines

Description
Searches backward for

specified string.
Searches forward for specified

string.
Transposes two words before

and after cursor.
Converts word to uppercase.
Scrolls screen display back 18

lines.
Copies region to kill ring.
Extended command prefix.
Yanks previous region from

kill ring and replaces
previous yank.

Deletes space around cursor.
Unmodifies buffer.
Merges two lines together.

Tells if line numbering is in
effect.

#off Turns off line numbering.
#on Turns on line numbering.
2d Tells if 2d is in effect.
2doff Turns off two-dimensional

mode.
2don Turns on two-dimensional

mode.
all_modes_off Turns off all modes.
apropos Alternate method of invoking

the A help option.
back_tab Moves cursor to previous tab

stop.
case? Tells if case matching occurs

during search function.
case_off Causes EMACS not to

distinguish between cases of
letters.

case_on Causes EMACS to distinguish
between cases of letters.

case_replace_off Treats uppercase and lowercase
letters the same when
replacing.

case_replace_on Distinguishes uppercase letters
from lowercase when
replacing.

A-6

Alphabetical Summary of Commands

Command
\ Esc

| Esc |x|

| Esc l " l

| Esc l«l

| Esc |x|

| Esc l«l

| Esc |x|

| Esc |x|

| Esc |x|

| Esc |x|

| Esc |x|

| Esc L_

| Esc lu
| Esc

| Esc LU

| Esc

| Esc
LU
LU

| Esc

| Esc

| Esc

LU
LU
LU

| Esc

| Esc

| Esc

LU
LU
LU

| Esc LU

I Esc LU

Function Name Description
case_replace? Tells whether cases are

distinguished when replacing.
date Inserts the current day, month,

year: MON, 28 DEC 1987
default_tabs Sets up default tabs every five

spaces.
delete_buffer Deletes current buffer, does not

put on kill ring.
delete_region Deletes region without placing

on kill ring.
describe Alternate method of invoking

the D help option.
display_buffer Displays information about

current buffer.
display_debug Displays information about

debug.
display_terminal Displays information about

your terminal.
display_window Displays information about

current window.
dt Inserts the current date and

time: 12/29/87 09:59:37
dump_file Partially compiles PEEL file in

current buffer to a fasdump
file with .EFASL suffix.

europe_dt Inserts the current date in the
European way: 29/12/87

expand_macro Expands keyboard macro into
PEEL source code.

explain_key Alternate method of invoking
the C help option.

fill_off Turns off fill mode.
fill_on Turns on fill mode in current

buffer.
forward_search_again Searches forward again.
fundamental Turns on fundamental mode.
get_bufname Inserts current buffer name in

buffer at cursor.
get_tab Restores previously saved tabs.
global_tabs Activates default tabs.
hcol Sets or checks horizontal

column.
help_on_tap Invokes help facility and lists

command options.
hscroll Uses current column position to

set hcol.

A-7

EMACS Reference Guide

Command
1 Esc LU

| Esc LU

| Esc LU

| Esc

| Esc
LU
LU

| Esc LU

| Esc

| Esc

| Esc

LU
LUru

| Esc |x|

| Esc

| Esc
L_ru

| Esc |x|

| Esc

| Esc
L_ru

| Esc

| Esc

| Esc

| Esc

L_J
LU
LUru

| Esc LU

| Esc ru
| Esc |x|

| Esc l |x |

| Esc

| Esc
IL_iru

Function Name
insert_version

load_compiled

load_pl_source

local_tabs
new features

one window

overlay_off
overlay_on
overlay_rubout

pl

popmark
pushmark

quote_command

reject
replace

reset
reverse_search_again
save_aU_files
save_tab

select buf

set_hscroll

set_key

set_left_margin

set_mode
set_mode_key

Description
Inserts version number of

EMACS into buffer.
Loads a fasdump file saved

with dump_file command.
Compiles and executes the

source code in a PL source
file.

Activates local (to buffer) tabs.
Displays the file found in

EMACS*>INFO>NEW_
FEATURES_INFO.

Transforms a split screen into
one. (Similar to
mod_one_window.)

Turns off overlay mode.
Turns on overlay mode.
In overlay mode, erases

previous character.
Compiles and executes contents

of current buffer.
Pops mark off mark stack.
Sets mark, pushes previous one

onto mark stack.
Identical to

Aq_quote_command.
Invalid command.
Replaces one string with

another globally.
Resets windows and columns.
Searches backward again.
Saves all files you modify.
Saves current tab positions in a

file.
Moves you to the specified

buffer. (Similar to
mod_select_buf.)

Prompts you for the hcol value
used in horizontal scrolling.

Binds function to a key on a
per-buffer basis.

Sets left margin to position of
cursor.

Sets buffer to specified mode.
Binds function to a key on a

per-mode basis.

A-8

Alphabetical Summary of Commands

Command Function Name Description
|Esc||_XJ set_permanent_key Binds function to a key for an

entire session.
1 Esc | | X | setmark Sets mark at current cursor.
1 Esc || X| settab Sets tabs to specified values.
| Esc] | X | set_tab Sets tabs to specified values.
1 Esc | | X | set_tabs Same as settab and set tab.
|Esc||_xJ settabs_from_table Sets tabs based on column

position of words.
| Esc | | X | setft Same as settabs from table.
|Esc||_Xj set_user_type Sets user type for file hook

procedure.
| E s c | [x] sort_dt Inserts year, day, month:

87/12/29
|Esc |__J split_window Divides screen horizontally into

two screens. (Similar to
mod_split_window.)

| E s c | L X j split_window_stay Splits screen; keeps cursor in
current one. (Similar to
mod_split_window_stay.)

l E s c M x l spd_add Adds speed_type abbreviation.
l E s c M x l spd_add_modal Adds abbreviation for specific

mode.
|Esc|[_X] spd_compile Compiles current buffer into

speed-type file.
| Esc | | X | spd_delete Deletes speed-type

abbreviation.
| Esc | | X | spd_list Gives information about

specific symbol.
| Esc | | X | spd_list_all Gives information about all

speed-type abbreviations.
| Esc | | X | spd_list_file Lists abbreviations for specific

file.
| Esc | | X | spd_load_file Loads a speed-type

abbreviation file.
| Esc | | X | spd_off Turns off speed-type

abbreviations.
| Esc | | X | spd_on Turns on speed-type

abbreviations.
| Esc | | X | spd_save_file Saves changes made to current

speed-type environment
| Esc | | X | tablist Sets tabs from a numbered list.
| Esc | | X | tell_left_margin Gives current setting of left

margin.
1 Esc | | X | tell_modes Displays all modes for buffer.
| Esc | | X | tell_position Displays line and cursor

position.

A-9

EMACS Reference Guide

Command
| Esc | | X |

|E8c | [x]

1 Esc 1 [Xl

| Esc | [Xl
| Esc | [Xl
| Esc| fT|

| Esc| [Y1
| Esc | fx]

| Esc | [xl
| Esc| [xl
1 Esc| fx]

Function Name
tell_right_margin

trim_date

trim_dt

typejab
untidy
view

view_on
wallpaper

which_tabs
write_file
vsplit

Description
Gives current setting of right

margin.
Inserts day, month, year:

29 Dec 1987
Inserts month, day, year:

12/29/87
Moves cursor to next tab stop.
Unjustifies a paragraph.
Same as view_file except that

bound function keys can be
used.

Turns view mode on.
Lists all EMACS commands

and functions.
Tells which tabs are in use.
Writes specified file.
Splits window vertically at

point.

A-10

Prime Extended Character Set

As of Rev. 21.0, Prime has expanded its character set from 128 to 256 characters. The basic
character set remains the same as it was before Rev. 21.0: it is the ASCII 7-bit set (called ASCII-7),
with the eighth bit turned on. However, the eighth bit is now significant; when it is turned off, it
signifies a different character. This expanded character set is called the Prime Extended Character
Set (Prime ECS).

The pre-Rev. 21.0 character set is a proper subset of Prime ECS. Software written before Rev. 21.0
will continue to run exactly as it did before. Software written at Rev. 21.0 that does not use the new
characters needs no special coding to use the old ones.

Prime ECS support is automatic at Rev. 21.0, when you may begin to use characters that have the
eighth bit turned off. However, be aware that the extra characters are not available on most
printers and terminals. A terminal supports Prime ECS if

• It uses ASCII-8 as its internal character set, and

• The TTY8 protocol is configured on your asynchronous line.

If you do not know whether your terminal supports Prime ECS, ask your System Administrator.

Table B-l shows the Prime Extended Character Set. The pre-Rev. 21.0 character set consists of the
characters with decimal values 128 through 255 (octal values 200 through 377). The characters
added at Rev. 21 all have decimal values less than 128 (octal values less than 200).

Specifying Prime ECS Characters
Direct Entry
On terminals that support Prime ECS, you can enter the characters directly. For information on how
to do this, see the appropriate manual for yourterminal. EMACS displays ECS characters as question
marks or rectangular blocks. You can check their octal values with I ctrix | = (the tell_position
command).

B-1

EMACS Reference Guide

Table B-1
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

RES1 Reserved for future
standardization

0000 0000 000 00 000

RES2 Reserved for future
standardization

0000 0001 001 01 001

RES3 Reserved for future
standardization

0000 0010 002 02 002

RES4 Reserved for future
standardization

0000 0011 003 03 003

IND Index 0000 0100 004 04 004
NEL Next line 0000 0101 005 05 005
SSA Start of selected area 0000 0110 006 06 006
ESA End of selected area 0000 0111 007 07 007
HTS Horizontal tabulation set 00001000 008 08 010
HTJ Horizontal tab with

justify
00001001 009 09 011

VTS Vertical tabulation set 00001010 010 0A 012
PLD Partial line down 00001011 011 0B 013
PLU Partial line up 00001100 012 OC 014
Rl Reverse index 00001101 013 0D 015
SS2 Single shift 2 00001110 014 0E 016
SS3 Single shift 3 0000 1111 015 OF 017
DCS Device control string 0001 0000 016 10 020
PU1 Private use 1 0001 0001 017 11 021
PU2 Private use 2 0001 0010 018 12 022
STS Set transmission state 00010011 019 13 023
CCH Cancel character 0001 0100 020 14 024
MW Message waiting 0001 0101 021 15 025
SPA Start of protected area 00010110 022 16 026
EPA End of protected area 00010111 023 17 027
RES5 Reserved for future

standardization
0001 1000 024 18 030

RES6 Reserved for future
standardization

0001 1001 025 19 031

RES7 Reserved for future 0001 1010 026 1A 032
standardization

CSI Control sequence
introducer

0001 1011 027 1B 033

ST String terminator 0001 1100 028 1C 034
OSC Operating system

command
0001 1101 029 1D 035

PM Privacy message 0001 1110 030 1E 036

B-2

Prime Extended Character Set

Table B-1
Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

APC Application program
command

0001 1111 031 1F 037

NBSP No-break space 0010 0000 032 20 040
i INVE Inverted exclamation

mark
0010 0001 033 21 041

C CENT Cent sign 0010 0010 034 22 042
£ PND Pound sign 0010 0011 035 23 043
a CURR Currency sign 0010 0100 036 24 044
¥ YEN Yen sign 0010 0101 037 25 045

I
I BBAR Broken bar 00100110 038 26 046

§ SECT Section sign 0010 0111 039 27 047
•• DIA Diaeresis, umlaut 00101000 040 28 050
© COPY Copyright sign 00101001 041 29 051
a FOI Feminine ordinal

indicator
00101010 042 2A 052

« LAQM Left angle quotation
mark

00101011 043 2B 053

- i NOT Not sign 00101100 044 2C 054
SHY Soft hyphen 00101101 045 2D 055

® TM Registered trademark
sign

00101110 046 2E 056

MACN Macron 00101111 047 2F 057
o DEGR Degree sign 00110000 048 30 060
± PLMI Plus/minus sign 0011 0001 049 31 061
2 SPS2 Superscript two 0011 0010 050 32 062
3 SPS3 Superscript three 0011 0011 051 33 063
' AAC Acute accent 00110100 052 34 064
H LCMU Lowercase Greek letter

u, micro sign
0011 0101 053 35 065

1 PARA Paragraph sign, Pilgrow
sign

0011 0110 054 36 066

• MIDD Middle dot 0011 0111 055 37 067
A

CED Cedilla 0011 1000 056 38 070

1 SPS1 Superscript one 0011 1001 057 39 071
O MOI Masculine ordinal

indicator
0011 1010 058 3A 072

» RAQM Right angle quotation
mark

0011 1011 059 3B 073

1/4 FR14 Common fraction
one-quarter

0011 1100 060 3C 074

B-3

EMACS Reference Guide

Table B-1
Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

V2 FR12 Common fraction
one-half

0011 1101 061 3D 075

3/4 FR34 Common fraction
three-quarters

0011 1110 062 3E 076

6 INVQ Inverted question mark 0011 1111 063 3F 077
A UCAG Uppercase A with grave

accent
01000000 064 40 100

A UCAA Uppercase A with acute
accent

01000001 065 41 101

A UCAC Uppercase A with
circumflex

01000010 066 42 102

A UCAT Uppercase A with tilde 01000011 067 43 103
A UCAD Uppercase A with

diaeresis
01000100 068 44 104

A UCAR Uppercase A with ring
above

0100 0101 069 45 105

/E UCAE Uppercase diphthong 0100 0110 070 46 106

9 UCCC Uppercase C with
cedilla

01000111 071 47 107

E UCEG Uppercase E with grave
accent

01001000 072 48 110

E UCEA Uppercase E with acute
accent

01001001 073 49 111

E UCEC Uppercase E with
circumflex

01001010 074 4A 112

E UCED Uppercase E with
diaeresis

01001011 075 4B 113

1 UCIG Uppercase I with grave
accent

01001100 076 4C 114

1 UCIA Uppercase I with acute
accent

01001101 077 4D 115

1 UCIC Uppercase I with
circumflex

01001110 078 4E 116

T UCID Uppercase I with
diaeresis

01001111 079 4F 117

■D UETH Uppercase Icelandic
letter Eth

0101 0000 080 50 120

N UCNT Uppercase N with tilde 0101 0001 081 51 121
6 UCOG Uppercase 0 with grave

accent
0101 0010 082 52 122

6 UCOA Uppercase 0 with acute
accent

01010011 083 53 123

B-4

Prime Extended Character Set

Table B-1
Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

6 ucoc Uppercase 0 with
circumflex

0101 0100 084 54 124

6 UCOT Uppercase 0 with tilde 01010101 085 55 125
6 UCOD Uppercase 0 with

diaeresis
01010110 086 56 126

X MULT Multiplication sign used
in mathematics

01010111 087 57 127

0 UCOO Uppercase 0 with
oblique line

0101 1000 088 58 130

U UCUG Uppercase U with grave
accent

0101 1001 089 59 131

U UCUA Uppercase U with acute
accent

0101 1010 090 5A 132

u UCUC Uppercase U with
circumflex

0101 1011 091 5B 133

0 UCUD Uppercase U with
diaeresis

0101 1100 092 5C 134

Y UCYA Uppercase Y with acute
accent

0101 1101 093 5D 135

P UTHN Uppercase Icelandic
letter Thorn

0101 1110 094 5E 136

fl LGSS Lowercase German
letter double s

0101 1111 095 5F 137

a LCAG Lowercase a with grave
accent

0110 0000 096 60 140

a LCAA Lowercase a with acute
accent

0110 0001 097 61 141

a LCAC Lowercase a with
circumflex

01100010 098 62 142

a LCAT Lowercase a with tilde 0110 0011 099 63 143
a LCAD Lowercase a with

diaeresis
01100100 100 64 144

oa LCAR Lowercase a with ring
above

01100101 101 65 145

ae LCAE Lowercase diphthong ae 01100110 102 66 146
9 LCCC Lowercase c with cedilla 01100111 103 67 147
e LCEG Lowercase e with grave

accent
01101000 104 68 150

e LCEA Lowercase e with acute
accent

01101001 105 69 151

e LCEC Lowercase e with
circumflex

01101010 106 6A 152

B-5

EMACS Reference Guide

Table B-1
Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

e LCED Lowercase e with
diaeresis

01101011 107 6B 153

1 LCIG Lowercase i with grave
accent

01101100 108 6C 154

f LCIA Lowercase i with acute
accent

01101101 109 6D 155

? LCIC Lowercase i with
circumflex

01101110 110 6E 156

7 LCID Lowercase i with
diaeresis

01101111 111 6F 157

6 LETH Lowercase Icelandic
letter Eth

01110000 112 70 160

n LCNT Lowercase n with tilde 01110001 113 71 161
6 LCOG Lowercase o with grave

accent
01110010 114 72 162

6 LCOA Lowercase o with acute
accent

01110011 115 73 163
A
0 LCOC Lowercase o with

circumflex
01110100 116 74 164

6 LCOT Lowercase o with tilde 01110101 117 75 165
6 LCOD Lowercase o with

diaeresis
01110110 118 76 166

T - DIV Division sign used in
mathematics

01110111 119 77 167

0 LCOO Lowercase o with
oblique line

0111 1000 120 78 170

U LCUG Lowercase u with grave
accent

0111 1001 121 79 171

U LCUA Lowercase u with acute
accent

0111 1010 122 7A 172

u LCUC Lowercase u with
circumflex

0111 1011 123 7B 173

u LCUD Lowercase u with
diaeresis

0111 1100 124 7C 174

y LCYA Lowercase y with acute
accent

0111 1101 125 7D 175

b LTHN Lowercase Icelandic
letter Thorn

0111 1110 126 7E 176

y LCYD Lowercase y with
diaeresis

0111 1111 127 7F 177

B-6

Prime Extended Character Set

Table B-1
Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

NUL Null 1000 0000 128 80 200
AA SOH/TC1 Start of heading 1000 0001 129 81 201
AB STX/TC2 Start of text 1000 0010 130 82 202
AC ETX/TC3 End of text 1000 0011 131 83 203
AD EOT/TC4 End of transmission 1000 0100 132 84 204
AE ENQ/TC5 Enquiry 1000 0101 133 85 205
AF ACK/TC6 Acknowledge 1000 0110 134 86 206
AG BEL Bell 1000 0111 135 87 207
AH BS/FEO Backspace 10001000 136 88 210
Al HT/FE1 Horizontal tab 10001001 137 89 211
AJ LF/NL/FE2 Line feed 10001010 138 8A 212
AK VT/FE3 Vertical tab 10001011 139 8B 213
AL FF/FE4 Form feed 10001100 140 8C 214
AM CR/FE5 Carriage return 10001101 141 8D 215
AN SO/LS1 Shift out 10001110 142 8E 216
A0 SI/LSO Shift in 10001111 143 8F 217
AP DLE/TC7 Data link escape 10010000 144 90 220
AQ DC1/XON Device control 1 10010001 145 91 221
AR DC2 Device control 2 10010010 146 92 222
AS DC3/XOFF Device control 3 10010011 147 93 223
AT DC4 Device control 4 10010100 148 94 224
AU NAK/TC8 Negative acknowledge 10010101 149 95 225
AV SYN/TC9 Synchronous idle 10010110 150 96 226
AW ETB/TC10 End of transmission

block
10010111 151 97 227

AX CAN Cancel 1001 1000 152 98 230
AY EM End of medium 1001 1001 153 99 231
AZ SUB Substitute 1001 1010 154 9A 232
1 ESC Escape 1001 1011 155 9B 233
A\ FS/IS4 File separator 10011100 156 9C 234
1 GS/IS3 Group separator 1001 1101 157 9D 235
A A RS/IS2 Record separator 1001 1110 158 9E 236
^ US/IS1 Unit separator 1001 1111 159 9F 237

SP Space 1010 0000 160 A0 240
! Exclamation mark 1010 0001 161 A1 241" Quotation mark 10100010 162 A2 242
NUMB Number sign 10100011 163 A3 243
$ DOLR Dollar sign 10100100 164 A4 244
% Percent sign 10100101 165 A5 245
& Ampersand 10100110 166 A6 246

B-7

EMACS Reference Guide

Table B-1
Prime Extended Character Set - Continued

G r a p h i c M n e m o n i c D e s c r i p t i o n Binary Decimal Hex Octal

' Apostrophe 10100111 167 A7 247
(Left parenthesis 10101000 168 A8 250
) Right parenthesis 10101001 169 A9 251
* Asterisk 10101010 170 AA 252
+ Plus sign 10101011 171 AB 253
> Comma 10101100 172 AC 254
- Minus sign 10101101 173 AD 255
. Period 10101110 174 AE 256
/ Slash 10101111 175 AF 257
0 Zero 10110000 176 BO 260
1 One 10110001 177 B1 261
2 Two 1011 0010 178 B2 262
3 Three 10110011 179 B3 263
4 Four 10110100 180 B4 264
5 Five 10110101 181 B5 265
6 Six 1011 0110 182 B6 266
7 Seven 10110111 183 B7 267
8 Eight 1011 1000 184 B8 270
9 Nine 1011 1001 185 B9 271
: Colon 1011 1010 186 BA 272
> Semicolon 1011 1011 187 BB 273
< Less than sign 1011 1100 188 BC 274
= Equal sign 1011 1101 189 BD 275
> Greater than sign 1011 1110 190 BE 276
? Question mark 1011 1111 191 BF 277
@ A T Commercial at sign 1100 0000 192 CO 300
A Uppercase A 1100 0001 193 C1 301
B Uppercase B 1100 0010 194 C2 302
C Uppercase C 1100 0011 195 C3 303
D Uppercase D 1100 0100 196 C4 304
E Uppercase E 1100 0101 197 C5 305
F Uppercase F 1100 0110 198 C6 306
G Uppercase G 1100 0111 199 C7 307
H Uppercase H 11001000 200 C8 310
I Uppercase I 11001001 201 C9 311
J Uppercase J 11001010 202 CA 312
K Uppercase K 11001011 203 CB 313
L Uppercase L 11001100 204 CC 314
M Uppercase M 11001101 205 CD 315
N Uppercase N 11001110 206 CE 316

B-8

Prime Extended Character Set

Table B-1
Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

0 Uppercase 0 11001111 207 CF 317
P Uppercase P 11010000 208 DO 320
Q Uppercase Q 11010001 209 D1 321
R Uppercase R 11010010 210 D2 322
S Uppercase S 11010011 211 D3 323
T Uppercase T 1101 0100 212 D4 324
U Uppercase U 11010101 213 D5 325
V Uppercase V 11010110 214 D6 326
w Uppercase W 11010111 215 D7 327
X Uppercase X 1101 1000 216 D8 330
Y Uppercase Y 1101 1001 217 D9 331
z Uppercase Z 1101 1010 218 DA 332
[LBKT Left bracket 1101 1011 219 DB 333
\ REVS Reverse slash,

backslash
1101 1100 220 DC 334

] RBKT Right bracket 1101 1101 221 DD 335
A CFLX Circumflex 1101 1110 222 DE 336

Underline, underscore 1101 1111 223 DF 337
GRAV Left single quote, grave

accent
1110 0000 224 EO 340

a Lowercase a 1110 0001 225 E1 341
b Lowercase b 11100010 226 E2 342
c Lowercase c 1110 0011 227 E3 343
d Lowercase d 11100100 228 E4 344
e Lowercase e 11100101 229 E5 345
f Lowercase f 11100110 230 E6 346
g Lowercase g 11100111 231 E7 347
h Lowercase h 11101000 232 E8 350
i Lowercase i 11101001 233 E9 351
j Lowercase j 11101010 234 EA 352
k Lowercase k 11101011 235 EB 353
I Lowercase I 11101100 236 EC 354

m Lowercase m 11101101 237 ED 355
n Lowercase n 11101110 238 EE 356
0 Lowercase o 11101111 239 EF 357
P Lowercase p 1111 0000 240 FO 360
q Lowercase q 1111 0001 241 F1 361
r Lowercase r 1111 0010 242 F2 362
s Lowercase s 1111 0011 243 F3 363
t Lowercase t 11110100 244 F4 364

B-9

EMACS Reference Guide

Table B-1
Prime Extended Character Set - Continued

iphic Mnemonic Description

u Lowercase u
V Lowercase v
w Lowercase w
X Lowercase x
y Lowercase y
z Lowercase z
{ LBCE Left brace
I VERT Vertical line
} RBCE Right brace~ TIL Tilde

DEL Delete

Binary Decimal Hex Octal

11110101 245 F5 365
11110110 246 F6 366
11110111 247 F7 367
1111 1000 248 F8 370
1111 1001 249 F9 371
1111 1010 250 FA 372
1111 1011 251 FB 373
1111 1100 252 FC 374
1111 1101 253 FD 375
1111 1110 254 FE 376
11111111 255 FF 377

^ >

B-10

Index

Index

Symbols
!, 2-19,3-26
!!, 2-19,3-26
#, 2-23, 3-1
#off, 2-23,3-1
#on, 2-23, 3-2
? help option, 4-1,4-5

Numbers
2d, 2-23,3-2
2doff, 2-23,3-2
2don, 2-23, 3-2

Keybindings
Backspace) | Delete |, 3-31
Ctrl® I, 2-9, 3-20
Ctrl. |, 2-2, 3-16, 4-1, 6-6
Ctrl? I, 2-2, 4-1
Ctri_A L 2-2, 3-4, 4-1
Ctrl_C I, 2-2, 3-11,4-1
Ctrl.D j, 2-2, 3-9, 4-1
Ctrl_L j, 2-2, 4-1
Ctri A I, 2-3, 3-6

CtriB |, 2-3, 3-4

CtrIC I, 2-14, 3-15, 3-29
CtrlD I, 2-7, 2-20, 3-2, 3-9, 3-21
CtriE |, 2-3, 3-10

Ctrl F I, 2-3, 3-14
CtriG I, 2-14, 2-26, 3-3 to 3^t, 3-27,

3-39
CtriH I, 2-7, 2-20, 3-2, 3-31
Ctrl I I, 2-12, 3^1, 5-1
CtriK L 2-8, 2-20, 3-2, 3-18, 3-21
Ctrl L 1,2-4
with numeric arguments, 3-29

CtrIM j

CtriN
CtrlO

use of, 3-34

], 2-3, 2-23, 3-23
], 2-6, 2-12, 3-23
], 1-13, 2-14, 3-6
], 2-7, 3-2, 5-2, 5-14
], 2-10
j or | Esc| ~~1, 3-30

CtrtP

CtrlQ
CtriR

CtriR

CtrlS
CtriT
CtrlU

2-10, 3-3, 3-15
,2-11,3-41
, 1-5, 2-26, 3-22

CtrlU

CtriU
CtrlV
CtriW

CtriW
CtriX
CtrIX

CtrIX

CtrIX
CtrIX

CtrIX

CtrIX

CtrIX

CtrIX

CtrIX

CtriX

CtrIX

CtrIX

CtrIX
CtrIX

CtrIX

CtrIX

CtrIX
CtrIX

CtrIX
CtrIX
CtriX

CtrIX
CtrIX
CtrIX

CtrIX
CtrIX
CtriX

CtrIX

CtrIX

CtrIX

CtrIX

CtrIX
CtrIX
CtrIX

Ctrl® |, 2-9, 2-10, 3-20
| CtriX 11 CtrlV |, 2-21, 3-43

|, 24, 3-23
, 2-8, 2-9, 3-18
on PT45, 3-15

CQ 2-18, 3-8
QJ 2-18, 3-14
[B 2-5, 3-17
[D, 2-5, 3-17
Q], 2-4, 3-6
UJ 2-4, 3-14
[TJ 2-6, 2-13, 3-39
UJ 2-24, 3-39
QJ, 2-26, 3-38
UJ 2-26, 3-5
UJ 2-26, 3-14
UJ 2-26, 3-37
UJ 2-17, 3-21
[fj 2-17, 3-21
UJ 2-17, 3-22
UJ 2-17, 3-32
UJ 2-9, 3-4
UJ 2-16, 3-13, 3-21

| CtriE

Bl [Return!, 2-16, 3-21

CtrIC

Ctrl F

CtriG
CtriH

CtriJFJ 2-16, 3-19
1-13, 2-14, 3-28
2-19, 3-26
2-15, 3-13
2-14, 3-17
2-8, 3-6
2-12, 3-18
2-8, 3-5
2-11, 3-19, 3-43
2-7, 3-8
2-15, 3-13
1-12, 2-14, 2-15, 3-13,

Ctri I

CtriK

Ctrl L

CtrlO

CtriR

CtrlS
3-31
CtriT |, 2-25, 3-40
CtriU |, 2-11, 3-41, 3-43
CtrlV |, 2-21, 3-42
CtriW |, 1-12, 2-14, 2-15, 3-22,

3-31

CtriX

CtrIX
CtriX
CtriX
CtriX

CtriX

CtriX
CtriX

CtriX
CtriX

CtriX

CtriX

CtrIX

CtrIX
CtrIX
CtriX

CtriX

CtrIX
CtriX

CtriX
CtriX
CtriX
CtriX

CtriX
CtrIX

with
CtriX
CtrIX
CtriX

CtriX

CtrIX

CtrIZ
CtrIZ
CtrIZ
CtrIZ

CtrIZ
CtrIZ

CtrIZ
CtrIZ
CtrIZ

CtrIZ
3-44

CtrIZ

CtrIZ
CtrIZ

CtrIZ
CtrIZ

CtrIZ

2-9, 3-9 to 3-10, 3-18

UJ 2-9, 3-20
UJ 2-9, 3-20
| Ctrl A |, 2-4, 3-5

CtriE |, 2-4, 3-14
Ctrl F |, 2-24, 3-15

CtriG |, 2-14, 3-17
CtriH |, 2-8, 3-5
CtriK 1, 2-8, 3-14
CtrlV |, 2-25, 3-43

CtriY |, 2-8, 3-42,

_Aj 2-9, 3-4
|TJ 2-13, 3-39
UJ 2-16, 3-17
UJ 2-8, 3-42
UJ 2-9, 3-25
UJ 2-12, 3-7

Q5J 2-22, 3-11
UJ 2-18, 3-11
(7J 2-6, 2-13, 3-34
[7f], 2-9, 3-20
"5J 2-17, 3-24
UJ 2-9, 3-25
[Qj 2-7, 3-3, 3-29
UJ.2-3

numeric arguments, 3-30
Return |, 2-12, 3-8

UJ 2-14 to 2-15, 3-31
[UJ 2-22, 3-12
UJ 2-17, 3-32

Esc

Esc

Esc
Esc

CtriY I, 2-8, 3-18, 3^t4
CtrIZ |, 2-3, 2-23, 3-25

[%J 2-11,3-28
UJ 2-3, 3-11,4-3
UJ 2-3, 3-22
UJ. 2-3, 3-22
UJ 2-7, 3-21
UJ, 2-7, 3-44
[~J 2-15, 3-41
\@\, 2-9, 3-20
UJ 2-4, 3-6
UJ 2-4, 3-5

Esc

Esc
Esc

Esc

Esc

Esc

lndex-1

EMACS Reference Guide

Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc
Esc

Esc
Esc

UJ 2-11, 3-7
CtrlD I, 2-8, 3-18
CtriH |, 2-8, 3-31
CtriG |, 3-17

| Ctrl I I, 2-12, 3-17
Ctri Q I, 2-12, 3-38
CtrlV |, 2-17, 3-32
CtriY |, 2-27, 3-44

Q_J 2-8, 3-9
UJ 2-4, 3-15, 3-44
Esc|, 2-18, 3-24

UJ 2-4, 3-15
UJ 2-4, 2-23, 3-16
03, 2-9, 3-20
QJ 2-12, 3-17
UJ 2-8, 3-14
UJ 2-11, 3-20
UJ 2-4, 3-5
UJ 2-16, 3-23
UJ 2-16, 2-22, 3-25
UJ 2-5, 2-6, 2-13, 3-13, 343
UJ 2-10, 3-31
UJ 2-10, 3-3, 3-14
[st~XCEl, 2-7, 3-19
UJ 2-11, 340
QJJ 2-11, 341
UJ 2-4, 3-5

on PT200 terminal, 1-3
[w], 2-8, 2-9, 3-8
|~X~1 Commands, 1-4, 2-26, 3-12

with argument of 0, 1-5
Es~l UJ 2-8, 3-44
Return |, 2-12, 2-21, 2-27, 3-8, 3-11

SFACEl, 2-21

Abbreviations
on EMACS command line, 1-12
PRIMOS in EMACS, 3-26
speed-type, 5-1
template, 5-3

abort_command, 2-14, 3-3, 3-39
abort_minibuffer, 2-26, 3-4
all_modes_off, 2-20, 3-4
append_to_buf, 2-9, 3-4
append_to_file, 2-9,3-4

apropos, 2-2 to 2-3,3-4,4-1 to 4-2
Arguments, numeric, 1-5,3-16, 3-22 to

3-23,3-25

B
back_char, 2-3,3-4
back_page, 2-4, 3-5
back_place_holder, 2-26,3-5,5-13 to 5-14
back_tab, 2-12, 3-5
back_to_nonwhite, 2-4,3-5
backward_clause, 2-4,3-5
backward_kill_clause, 2-8, 3-5
backward_kill_line, 2-8, 3-5
backward_kill_sentence, 2-8, 3-6
backward_para, 2-4,3-6
backward_sentence, 2-4, 3-6
back_word, 2-4, 3-5
beginjine, 2-3,3-6
Binding commands and functions, 1-4,

3-33,3-34,6-2, 6-6 to 6-7, 8-23
Break character

see: PRIMOS break
Buffer and window commands

buffers, 2-16
windows, 2-16

buffer_info function, 6-8
Buffers, 1-1,1-8 to 1-9, 2-15 to 2-16,3-4,

3-19, 3-21,3-23,3-25 to 3-26,
3-29, 3-31

setting tabs, 3-35
size of, 3-17,3-24

C mode, 8-7
abbreviations and templates, 8-10
additional information, 8-13
commands and keybindings, 8-9
turning off, 8-8
turning on, 8-7, 8-9

Capabilities, TERMCAP
see: TERMCAP capabilities

capinitial, 2-11, 3-7
Carriage return character, 2-12, 2-20, 3-2,

3-8,3-44
case?, 2-11,3-7
Case conversion, 2-11, 3-19
Case matching, 3-7
case_off, 2-10, 3-7
case_on, 2-10, 3-7
casejreplace?, 2-11, 3-7
case_replace_off, 2-11, 3-7
case_replace_on, 2-11, 3-7
CBL compiler, 8-1

options, 8-31

centerjine, 2-12, 3-7
Character sequences, 1-4
clerical$ user type, 6-3
COBOL mode, 5-14, 6-3, 8-1

additional information, 8-2
commands and keybindings, 8-2
commands disabled in, 8-6
entering text, 8-2
fundamental mode commands in, 8-2
keybindings, 8-2
turning off, 8-2
turning on, 8-1

collect_macro, 2-18,3-8, 6-8
.COMI file, execution of, 3-27
Commands for slow terminals, 2-25
Common LISP mode

additional information, 8-26
commands and keybindings, 8-26
turning off, 8-26
turning on, 8-26

Compile command
compiler options, 8-31
compiling programs from EMACS,

8-29
debugging programs, 8-29, 8-32
internal variables, 8-30
initializing variables, 8-31

Continuous lines environment (two-
dimensional mode

see: Environments
Control key, 1-3
copy_region, 2-8 to 2-9,3-8
cr, 2-12,2-20, 3-8
cret_indent_relative, 2-12, 3-8
Cursor movement commands, 2-3
Cursor-function/number modes

see: Modes

date, 2-24, 3-8
Debugging programs, 8-29, 8-32
default_tabs, 2-13, 3-8
Defun statement, 6-5
delete_blank_lines, 2-7, 3-8
delete_buffer, 2-7,3-9
delete.char, 1-4, 2-7, 2-20, 3-9, 6-1,6-6
delete_region, 2-7,3-9
delete_word, 2-8, 3-9
Deleting and restoring text, 2-7, 34, 3-18,

3-44
Delimiters, sentence, 3-6, 3-14 to 3-15
Delimiters, word, 3-15
describe, 2-2 to 2-3, 3-9,4-1,4-3 to 44
Dispatch table

see: Modes

lndex-2

Index

display Jjuf fer, 2-24, 3-9
display_debug, 2-24, 3-9
display_teiminal, 2-24, 3-9
display_window, 2-24,3-10
dt, 2-24,3-10
dump.file, 2-25,3-10, 6-2
Dynamic segments, 2-15

Editing commands, 2-5
abort, break, and reexecute commands,

2-14
case conversion, 2-11
deleting and restoring text, 2-7
formatting, 2-13
inserting new lines, 2-12
inserting text, 2-6
nonalphabetic characters, 2-7, 3-1
ring of marks, 2-10
saving text and exiting from EMACS,

2-14
searching and replacing, 2-10, 3-3
tabs and indentation, 2-12
the mark and the region, 2-9
transposition, 2-11, 341

.EFASL, 6-2
EMACS command line, 1-9

abbreviations, 1-12
options, 1-10, 5-6

EMACS commands, 2-1
aborting, 3-3
conventions, 1-3
cursor movement, 2-3
def inition of, 1-1
editing, 2-5
extended, 14
file management, 2-15
macros, 2-17
modes, general, 2-19
numeric arguments, 1-5
online help, 2-2
PRIMOS commands, 2-19
screen display, 24
ten basic commands, 1-14
uppercase or lowercase letters, 3-1

EMACS language modes, 8-1
C mode, 8-7
CBL compiler, 8-1
C compiler, 8-9
COBOL mode, 8-1
Common LISP mode, 8-26
compiling COBOL programs, 8-2
compiling FORTRAN programs, 8-15
compiling VRPG programs, 8-19
FORTRAN mode, 8-13

LISP mode, 8-24
Listener mode, 8-28
RPG mode, 8-16

EMACS screen, 1-6
displaying extended lines, 2-5, 3-16
EMACS status line, 1-6,1-8, 2-20,

3-16, 3-33, 5-8
freezing display, 340
line numbers on EMACS screen, 1-7
messages on EMACS screen, 1-7
minibuffer, 1-6,1-9
moving display, 3-5, 3-23
organization of, 1-6
shifting display left, 3-16 to 3-17, 3-33
shifting display right, 2-5,3-17
splitting screen vertically, 343
text area, 1-6

EMACS Standard User Interface (SUI),
1-1,1-3,1-11

EMACS Standard User Interface with
Extensions (SUIX), 1-1,1-3,
1-11

EMACS Status Line
see: EMACS Screen

EMACS terms, common, 1-1
.EM.CPL files, 1-14
.EMji files, 1-14
endjine, 2-3, 3-10
Entering EMACS, 1-9
Entry, TERMCAP

see: TERMCAP entry
Environments, 2-23

continuous lines environment (two-
dimensional mode), 2-23, 3-2

line numbering, 2-23,3-1
Escape key, 1-3,1-5
europe_dt, 2-24, 3-10
exchange_mark, 2-9,3-9 to 3-10, 3-18
execute_macT0,2-18,3-11
Exiting from EMACS, 1-13, 2-14
exit_minibuffer, 2-27,3-11
expand_macro, 2-18,3-11
explain_key, 2-2 to 2-3,3-11,4-1 to 4-2
explore, 2-22,3-11
Explore mode

see: Modes
Explore mode options, 2-22, 3-12
extend_command, 2-26, 3-12
Extended commands, 14

Fasdump format, 2-25,3-10, 6-2
Fasload, 3-19, 6-7
File hooks, 2-19

File hooks mechanism, 6-3
clerical$ user type, 6-3 to 64
creating and changing, 6-5
no_file_hooks$ user type, 6-3
programmers user type, 6-3
setq function, 64
suffix for programmers user type, 64

File management commands, 2-15
Filename, valid PRIMOS, 1-10
file_output buffer, 3-26 to 3-27
Fill mode

see: Modes
fill.off, 2-6,2-21, 3-12
fill_on, 2-6,2-21,3-13
filLpara, 2-6,2-13,3-13, 3-39, 343
find_file, 2-15,3-13
finish_macro, 2-18,3-14, 6-8
Formatting commands, 2-13
FORTRAN mode, 8-13

additional information, 8-15
compiling programs, 8-15
entering text, 8-14
turning off, 8-15
turning on, 8-14
useful commands, 8-15

forward_char, 2-3, 3-14
forward_clause, 24,3-14
forward_kill_clause, 2-8,3-14
forward_kill_sentence, 2-8, 3-14
forward_para, 24,3-14
forward_place_holder, 2-26, 3-14, 5-12,

5-14
forward_search_again, 2-10, 3-15
forward_search_command, 2-10,3-3, 3-14
foTward_sentence, 24,3-15
forward_word, 24, 3-15
Function key keypaths, lists of, 6-7
Function keys, 1-1, 1-3,3-15
Functions, 1-2 to 1-3

binding to Esc sequence, 3-34
binding to terminal key, 6-6
buffer_info, 6-8
collect_macro, 6-8
finish_macro, 6-8
found_file_hook, 6-3
help_on_tap, 6-8
next_line_command, 14
overlayer, 2-20, 3-24
selfjnsert, 2-6,3-33
setq, 6-2
toggle_overlay_off, 6-8
toggle_pverIay_on, 6-8

fundamental command, 2-20, 3-15
Fundamental mode

see: Modes

lndex-3

EMACS Reference Guide

get_bufname, 2-16, 2-24, 3-15
get_filename, 2-24, 3-15
getjab, 2-13, 3-15
globaljabs, 2-13,3-16
gotoJine,24,2-23,3-16

H
hcol, 2-5,3-16, 3-33
Help commands, 2-2, 4-1

describe command options, 44
description of commands and

functions, 4-3
EMACS help options, 4-5
list of last 20 characters you typed, 44
what a command does, 4-2
which command to use, 4-2

help_on_tap, 2-2, 3-16,4-1, 6-8
horizJeft, 2-5,3-17, 343
Horizontal movement of screen, 2-5, 3-16
horiz_right, 2-5,3-17, 343
hscroll, 2-5,3-17

ignore_prefix, 2-14, 3-17
indent_relative, 2-12, 3-17
indent_to_fill_prefix, 2-12, 3-17
Information commands, 2-24
insertjjuf, 2-16, 3-17
insert_file, 2-15,3-18
Inserting new lines, 2-12
Inserting text, 2-6
insertjab, 2-12, 3-18
insert_yersion, 2-24,3-18

K

Keybindings, 1-2,14
creating, 3-33
customized, 6-6
fundamental mode, 3-15
in COBOL mode, 8-2
in LISP mode, 8-24
lists of function key keypaths, 6-7
toggles for, 6-7
uppercase or lowercase letters, 3-1

Keypath, 1-2,14
specifying, 3-34

Kill ring, 2-7 to 2-8,3-18,342, 3-44
recalling text, 344

kill Jine, 2-8, 2-20, 3-18
kill_region, 2-8 to 2-9, 3-18
kiU_rest_of_buffer, 2-8, 3-18

L help option, 4-1,44
Language modes

see: EMACS language modes
leave_one_white, 2-7, 3-19
Library commands, 2-25
Library files

creating user, 6-2
customized, 6-1
.EFASL suffix, 6-2
.EM suffix, 6-2
example of user, 6-1
fasdump operation, 6-2
file hook categories, 6-3
menus, 6-8
PEEL statements in, 6-1
saving and executing user, 6-2
-ULIB option, 6-2

Line numbering, 2-23
see also: Environments

Line numbers on EMACS screen
see: EMACS Screen

LISP mode
commands and keybindings, 8-24
Common LISP mode, 8-26
Listener mode, 8-28
turning off, 8-24
turning on, 8-24

list_buffers, 2-16,3-19
Listener mode

additional information, 8-28
commands and keybindings, 8-28
turning off, 8-28
turning on, 8-28

load_compiled, 2-25,3-19, 6-3
load_pl_source, 2-25,3-19, 6-2
localjabs, 2-13,3-19
Locked keyboard condition, 1-14
Logout, forced, 1-13
lowercase_region, 2-11, 3-19, 343
lowercase_word, 2-11, 3-20

M
Macros, 1-2,2-17,3-8,3-11

keybindings, 3-15
with Global Replace key, 3-30

Margins, 2-13
mark, 2-9 to 2-10,3-10,3-18,3-20, 3-25,

3-35, 3-44
markjjottom, 2-9, 3-20
mark_end_of_word, 2-9,3-20
mark_para, 2-9, 3-20
mark_top, 2-9,3-20
mark_whole, 2-9,3-20

Menus in library files, 6-8
mergejines, 2-7, 3-21
Messages on EMACS screen

see: EMACS Screen
Minibuffer, 1-2 to 1-3,1-9

current buffer information, 3-39
margin display, 3-39

Miscellaneous commands, 2-26
Mod prefix, 1-12
Modes, 1-2

binding a function to a keypath, 3-34
cursor-function/number, 2-22
dispatch table, 2-20
explore mode, 2-22, 3-11 to 3-12
fill mode, 2-6,2-13,2-19, 2-21, 3-13,

3-34,3-39, 64
fundamental mode, 1-3,2-19, 3-15, 8-1
fundamental mode on PT200,2-23
general, 2-19
language modes

see: EMACS language modes
number, 2-22
overlay mode, 2-20, 3-2, 3-24, 6-3, 6-7

to 6-8
setting with toggle, 6-8
view mode, 2-21,341 to 343

mod_one_window, 2-17,3-21
mod_select_buf, 2-16,3-21, 3-33
mod_split_window, 2-17, 3-21, 3-38
mod_split_window_stay, 2-17,3-22,3-39
mod_write_file, 1-12,2-14 to 2-15, 3-22
movejjottom, 2-3, 3-22
movejop, 2-3, 3-22
multiplier, 2-26,3-22

N
New lines, inserting, 2-12, 34
new Jeatures, 2-24,3-22
nextjwf, 1-3, 2-16, 3-23
nextJine_command, 14, 2-3, 2-23, 3-23,

6-6
next_page, 24,3-23
Nonalphabetic characters, 2-7, 3-1
Nonprinting characters, 3-2,344
-NOXOFF, 1-11,3-3,7-3
Num lock key, 2-22

one_window, 2-17, 3-23
open Jine, 2-6, 2-12, 3-23
Options on EMACS command line, 1-9 to

1-10
-ECHO_CPL, 1-10
-HEIGHT, 1-10

lndex-4

Index

Options on EMACS command line
(continued)

-HELP, 1-10
-NOXOFF, 1-11,3-3
-NUUB,1-11
-SAVE_SCREEN, 1-11
-SPDT, 1-11, 5-6, 8-13
-SPEED, 1-11
-SUI, 1-11
-SUIX, 1-11
-TTP, 1-10,1-12,7-2 to 7-3
-ULIB, 1-11, 6-3
-WIDTH, 1-11
-XOFF, 1-11

other_window, 2-17, 3-24
Overlay mode

see: Modes
overlayer, 2-20,3-24
overlay_off, 2-6,2-20, 3-24
overlay_on, 2-6,2-20, 3-24
overlay_rubout, 2-20, 3-24

Passwords, 3-13, 3-29
Pathname, 1-8 to 1-9, 5-6
PEEL statements, 1-3,2-2, 2-18,2-25,

3-10 to 3-11,3-19, 3-24, 6-1,
8-19,8-29

defun statement, 6-5
for Common Lisp mode, 8-24
function for programmers user type,

6-5
select statement, 6-5

PF12key,6-l, 6-7
pi, 2-18,3-24, 3-33, 8-29
PL: prompt, 1-3,3-24
Placeholders, Speed-type, 5-3, 5-9
pl_minibuffer, 2-18, 3-24
Point, 14,2-3,2-9,3-9 to 3-10
popmark, 2-10,3-25
Prefix, 1-2
prepend_to_buf, 2-9,3-25
prepend_to_file, 2-9, 3-25
Pretty printing, 8-7, 8-27
prev_buf, 2-16,2^ 3-25
prev_line_command, 2-3, 2-23, 3-25
Prime EMACS Extension Language

statements
see: PEEL statements

PRIMOS abbreviations, 3-26
PRIMOS break, 2-14, 3-6
PRIMOS command execution, 2-19, 3-26
PRIMOS "start print" command, 1-11, 2-7,

3-3
PRIMOS "stop print" command, 1-11,3-3

primos_command, 2-19, 3-26
options to, 3-26

primos_external, 2-19,3-26 to 3-27
primos_intemal_como, 2-19, 3-26 to 3-27
primos_internal_screen, 2-19,3-26 to 3-27
programmers user type, 6-5
PST 100 terminal, 1-10,7-3

TERMCAP entry, 7-12
PT200 terminal, 1-10,7-3
PT200W terminal, 1-10
PT45 SEND key, 3-15
PT45 terminal, 1-10,7-3
pushmark, 2-10,3-28

Q

\j_quote_command, 2-7,3-2, 3-29, 5-2,
5-14

query_replace, 2-11,3-28
quit, 1-13,2-14,3-28
Quitting EMACS, 1-13
quote_command, 2-7,3-29

readjile, 2-15,3-13,3-29
Recovering from an error, 1-13
REENTER, 1-13
eexecute, 2-14,3-29
refresh, 24, 3-29
Regions, 2-9,34,3-9,3-20,3-25,3-28
reject, 3-30
repaint, 2-3,3-30
replace, 2-11,3-30
Replacing character strings, 3-28
reset, 2-5, 3-30
reverse_search, 4-3
reverse_search_again, 2-10, 3-31
reverse_search_command, 2-10, 3-30
Ring of marks, 2-10, 3-20
RPG mode, 8-22

additional information, 8-19
compiling VRPG programs, 8-19
configuring RPG mode, 8-19
entering text, 8-18
fundamental mode commands, 8-18
help messages, 8-20
library files, 8-22
specification sheet templates, 8-16,

8-22
turning off, 8-19
turning on, 8-16

rubout_char, 2-7,2-20, 3-31
rubout_word, 2-8,3-31

save_aU_files, 1-13, 2-14 to 2-15,3-31
save _file, 1-12,2-14 to 2-15,3-13,3-31
savejab, 2-13,3-15, 3-32
saving text, 1-12,2-14
Screen display commands, 24

horizontal movement, 2-5
vertical movement, 24
wide-screen, 2-5

Screen, EMACS
see: EMACS Screen

scroll_other_b-ckward, 2-17, 3-32
scroll_otheT_forward, 2-17,3-32
searchJd, 4-3
Searching and replacing commands, 2-10,

3-3
Segments, dynamic, 2-15
Select statement, 6-5
select_any_window, 2-17,3-32
select_buf, 2-16,3-13,3-21,3-32
self .insert function, 2-6,3-24,3-33
Separators, line, 1-5.3-18, 3-23,3-25,

3-31
Separators, word, 3-23,3-25, 5-1

changing speed-type, 5-13
in COBOL mode, 8-5
speed-type for fundamental mode, 5-8

setft, 2-13,3-37
set_hscroll, 2-5,3-33
setjcey, 2-18, 3-33, 6-8
setjeft.margin, 2-6,2-13,3-17, 3-33
setmark, 2-9,3-35
set_mode, 2-20,3-33
set_mode_key, 2-20, 3-34
set_permanent_key, 2-18,3-33 to 3-34,

6-2, 6-6, 6-8
setq function, 6-2, 64, 8-31
setq_user_type$, 64
set_right_margin, 2-6, 2-13, 3-34
setjab, 2-12, 3-35
settab, 2-12,3-35
setjabs, 2-12,3-35
settabsjfromjable, 2-13, 3-36
set_user_type, 2-25, 3-37
As_forward_search_command, 2-10,3-3
Slow terminals, 2-25, 340
sort_dt, 2-24, 3-37
spd.add, 2-26,3-37, 5-2, 5-14
spd_add_modal, 2-26, 3-37, 5-3, 5-14
spd_add_region, 2-26,3-37, 5-3, 5-15
spd_compile, 2-26, 3-37, 5-13, 5-15
spd_delete, 2-26,3-37, 5-7, 5-15
spdjist, 2-26, 3-37, 5-15
spdjist_all, 2-26,3-37,5-2,54, 5-8, 5-16

to 5-17
spdJistjile, 2-26,3-38, 5-8, 5-17

lndex-5

EMACS Reference Guide

spdjoad.file, 2-26, 3-38,5-6, 5-13, 5-15,
5-17

spd_off, 2-25,3-38,5-7,5-17
spd_on, 2-25,3-38, 5-2, 5-7, 5-17
spd_save_file, 2-26,3-38,54, 5-17
-SPDT, 1-11, 5-5 to 5-6, 8-13
spd_unexpand, 2-26, 3-38, 5-18
Special characters, displaying, 2-7, 3-2
Speed-type abbreviations, 5-1

adding and deleting interactively, 5-7
adding templates to source file, 5-9
changing separators, 5-13
compiling and loading the source file,

5-13
creating interactively, 5-2
creating templates interactively, 5-3
defining a region as, 5-3
defining for language modes, 5-13 to

5-14
editing source files, 5-7
-SPDT option, 1-11, 5-6, 8-13
.ESPD suffix, 54 to 5-6, 5-13, 5-15,

5-17
expansion, 5-1
formatting rules for source file, 5-8
formatting rules for templates, 5-9
loading from EMACS, 5-6
loading with -SPDT command line

option, 5-6
placeholder declaration, 5-12
placeholders, 5-3, 5-9
primary file, 5-17
saving during an EMACS session, 5-4
saving in a file as you exit, 54
separators, 5-1
.spdjist buffer, 5-8,5-16
template expansion, 5-12
templates for RUNOFF code, 5-9
using saved abbreviations in .ESPD

file, 5-5
Speed-type commands, 2-25, 3-37, 5-13
split Jine, 2-12,3-38
split_window, 2-17, 3-38
split_window_stay, 2-17, 3-38
START, 1-13
Status Line

see: EMACS Screen

telLmodes, 2-20,2-24,3-39
tell_position, 2-24,3-39
tell_right_margin, 2-6,2-13,340
TERMCAP, 7-1

alaises, 7-12
defining global variables, 7-2
disclaimer, 7-1
Prime TERMCAP database, 7-1, 7-3,

7-11
TERMCAP capabilities, 7-1, 74

alphabetical list of, 7-13
basic terminal features, 7-4 to 7-6
Boolean data types, 74
control characters, 7-10
cursor motion, 7-6
delay padding, 7-10
numeric data types, 74
placeholder sequence, 7-10
screen movement, 74 to 7-6
screen update, 74 to 7-5, 7-7
software control, 74 to 7-5, 7-9
special characteristics, 74 to 7-5, 7-9
string data types, 74

TERMCAP entry, 7-1
adding to TERMCAP database, 7-1,

7-11
building and testing, 7-11
Prime PST 100 terminal, 7-12
structure, 7-12

.TERMCAPS global variable, 7-2,7-11
Terminal status, 1-8
Terminal type, 1-9 to 1-10, 7-3

how to indicate, 7-2
TERMINALTYPES global variable, 1-10,

7-2,7-11
Tilde character, 3-13, 3-29
toggle_overlay_off, 6-8
toggle_overlay_on, 6-8
toggle_redisplay, 2-25,340
Toggles, 6-7
transpose_word, 2-11, 340
Transposition, 2-11,341
trim_date, 2-24, 340
trim_dt, 2-24,340
-TTP, 1-10,1-12, 7-2, 7-3
twiddle, 2-11,341
typejab, 2-12,3-41,5-1

view, 2-21,341
View mode, 343

see also: Modes
View mode options, 2-21, 342
view_file, 2-21, 342
view_kill_ring, 2-8,342, 344

with numeric arguments, 343
viewjines, 2-25,340, 343
view_off, 2-21, 343
view_on, 2-21,343
vsplit, 2-17, 343

w
wallpaper, 2-24, 343
which Jabs, 2-13,343
white_delete, 2-7, 344
Wide-screen display, 2-5
Windows, 1-2, 2-16,3-21, 3-24,3-32
wrap, 2-21, 344
write Jile, 1-12,2-14 to 2-15, 344

X

-XOFF, 1-11

yankjdlljext, 2-8,342, 344
yank_minibuffer, 2-27,344
yank_region, 2-8, 3-44
yank_replace, 2-8, 3-44

tablist, 2-12, 3-39
Tabs and indentation, 2-12
Tabs, setting, 3-32, 3-35, 3-39
takejeft_margin, 2-6,2-13, 3-39
take_right_margin, 2-13,3-39
teUJeft.margin, 2-6, 2-13, 3-39

unmodify, 2-15, 341
untidy, 2-13,3-39, 341,3-43
uppercase_region, 2-11,341,3-43
uppercase_word, 2-11, 341
User type, 2-19, 6-5
userJypeS variable, 6-2, 6-4

lndex-6

Surveys

READER RESPONSE FORM

EMACS Reference Guide
DOC5026-2LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our user
publications.

1. How do you rate this document for overall usefulness?

| | excellent U] very good U] good Q] fair QJ poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

I | Much better UJ Slightly better [UJ About the same
I I Much worse Q] Slightly worse QJ Can't judge

5. Which other companies' manuals have you read?

Name:
Position:_
Company:.
Address:

.Postal Code:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bldg 21
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	vi
	vii
	About This Book
	ix
	x
	xi
	xii
	Chapter 1
	Getting Started With EMACS
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	Chapter 2
	Summary of EMACS Commands by Function
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	Chapter 3
	Dictionary of EMACS Commands
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	Chapter 4
	Online Help Facility
	4-1
	4-2
	4-3
	4-4
	4-5
	Chapter 5
	Speed-type
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	Chapter 6
	Customized Library Files
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	Chapter 7
	The TERMCAP Facility
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	Chapter 8
	Language Modes
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	Appendices
	Appendix A
	Alphabetical Summary of Commands
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	Appendix B
	Prime Extended Character Set
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	Index
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Surveys
	
	

